nan_inf_utils_detail.cc 10.5 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
16 17

#include "paddle/fluid/framework/details/nan_inf_utils.h"
W
WangXi 已提交
18
#include "paddle/fluid/framework/op_proto_maker.h"
19
#include "paddle/fluid/framework/scope.h"
20
#include "paddle/phi/common/amp_type_traits.h"
21

22
#include "paddle/fluid/framework/convert_utils.h"
Z
zyfncg 已提交
23
#include "paddle/phi/kernels/funcs/eigen/extensions.h"
24

25 26
DECLARE_int32(check_nan_inf_level);

W
WangXi 已提交
27 28 29
namespace paddle {
namespace framework {
namespace details {
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
struct DebugTools {
  DebugTools() {}
  std::string path = "";
};
static DebugTools debug_nan_inf;

void SetNanInfDebugPath(const std::string& nan_inf_path) {
  debug_nan_inf.path = nan_inf_path;
  VLOG(4) << "Set the log's path of debug tools : " << nan_inf_path;
}

std::string GetNanPath() {
  if (debug_nan_inf.path.empty()) {
    return "";
  }
  return debug_nan_inf.path + "/";
}
W
WangXi 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

static std::once_flag white_list_init_flag;

static int op_role_nan_inf_white_list = 0;

static constexpr int FORWARD = 0x10000;

// lazy init
static const std::unordered_map<std::string, int>& role_str2int() {
  /* In op_proto_maker.h
   * framework::OpRole::kForward      = 0x0000,
   * framework::OpRole::kBackward     = 0x0001,
   * framework::OpRole::kOptimize     = 0x0002,
   * framework::OpRole::kRPC          = 0x0004,
   * framework::OpRole::kDist         = 0x0008,
   * framework::OpRole::kLRSched      = 0x0010,
   * framework::OpRole::kLoss         = 0x0100,
   * framework::OpRole::kNotSpecified = 0x1000,
   */
  static const std::unordered_map<std::string, int> _role_str2int = {
      {"forward", FORWARD}, /* kForward=0, can't filter */
      {"backward", static_cast<int>(framework::OpRole::kBackward)},
      {"optimize", static_cast<int>(framework::OpRole::kOptimize)},
      {"rpc", static_cast<int>(framework::OpRole::kRPC)},
      {"dist", static_cast<int>(framework::OpRole::kDist)},
      {"lrsched", static_cast<int>(framework::OpRole::kLRSched)},
      {"loss", static_cast<int>(framework::OpRole::kLoss)},
      {"default", static_cast<int>(framework::OpRole::kNotSpecified)},
  };
  return _role_str2int;
}

static std::unordered_set<std::string>& op_type_nan_inf_white_list() {
  static std::unordered_set<std::string> _op_type_nan_inf_white_list = {
      "coalesce_tensor", /* This Op will alloc tensor, and may not init space */
  };
  return _op_type_nan_inf_white_list;
}

static std::unordered_map<std::string, std::vector<std::string>>&
op_var_nan_inf_white_list() {
  static std::unordered_map<std::string, std::vector<std::string>>
      _op_var_nan_inf_white_list = {
          /* encoded & gather var consist of idx&val, can't judge directly */
          {"dgc", {"__dgc_encoded__", "__dgc_gather__"}},
      };
  return _op_var_nan_inf_white_list;
}

static void InitWhiteListFormEnv() {
  // op_type_skip and op_var_skip may be NULL.
  // So need init static value in there, prevent thread competition.
  // NOTE. role_str2int needn't do this for it only used in this func.
  op_type_nan_inf_white_list();
  op_var_nan_inf_white_list();

  // export PADDLE_INF_NAN_SKIP_OP="op0,op1,op2"
  // export PADDLE_INF_NAN_SKIP_ROLE="role1,role2,role3"
  // export PADDLE_INF_NAN_SKIP_VAR="op0:var0,op0:var1,op1:var0"
  const char* op_type_skip = std::getenv("PADDLE_INF_NAN_SKIP_OP");
  const char* op_role_skip = std::getenv("PADDLE_INF_NAN_SKIP_ROLE");
  const char* op_var_skip = std::getenv("PADDLE_INF_NAN_SKIP_VAR");

110
  if (op_type_skip) {
W
WangXi 已提交
111 112 113 114 115 116 117
    std::stringstream ss(op_type_skip);
    std::string op_type;
    while (std::getline(ss, op_type, ',')) {
      op_type_nan_inf_white_list().emplace(op_type);
    }
  }

118
  if (op_role_skip) {
W
WangXi 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132
    std::stringstream ss(op_role_skip);
    std::string op_role;
    while (std::getline(ss, op_role, ',')) {
      PADDLE_ENFORCE_EQ(role_str2int().find(op_role) != role_str2int().end(),
                        true,
                        platform::errors::InvalidArgument(
                            "Skip role must be one of "
                            "{forward,backward,optimize,rpc,dist,lrsched,loss,"
                            "default}, instead of %s",
                            op_role));
      op_role_nan_inf_white_list |= role_str2int().at(op_role);
    }
  }

133
  if (op_var_skip) {
W
WangXi 已提交
134 135 136 137 138
    std::stringstream ss(op_var_skip);
    std::string op_var;
    while (std::getline(ss, op_var, ',')) {
      auto pos = op_var.find(":");
      PADDLE_ENFORCE_EQ(
139 140
          pos != std::string::npos,
          true,
W
WangXi 已提交
141 142 143 144 145 146 147 148 149 150 151 152
          platform::errors::InvalidArgument(
              "Skip var format must be op:var, instead of %s", op_var));
      std::string op = op_var.substr(0, pos);
      std::string var = op_var.substr(pos + 1);

      op_var_nan_inf_white_list()[op].emplace_back(var);
    }
  }
}

template <>
template <typename T>
L
Leo Chen 已提交
153
void TensorCheckerVisitor<phi::CPUContext>::apply(
154 155 156 157 158
    typename std::enable_if<
        std::is_floating_point<T>::value ||
        std::is_same<T, ::paddle::platform::complex<float>>::value ||
        std::is_same<T, ::paddle::platform::complex<double>>::value>::type*)
    const {
159 160 161
  std::string cpu_hint_str =
      GetCpuHintString<T>(op_type, var_name, tensor.place());
  CheckNanInfCpuImpl(tensor.data<T>(), tensor.numel(), cpu_hint_str);
W
WangXi 已提交
162 163 164
}

template <>
L
Leo Chen 已提交
165 166
void tensor_check<phi::CPUContext>(const std::string& op_type,
                                   const std::string& var_name,
167
                                   const phi::DenseTensor& tensor,
L
Leo Chen 已提交
168 169
                                   const platform::Place& place) {
  TensorCheckerVisitor<phi::CPUContext> vistor(
170
      op_type, var_name, tensor, place);
171
  VisitDataType(framework::TransToProtoVarType(tensor.dtype()), vistor);
W
WangXi 已提交
172 173 174 175
}

void CheckVarHasNanOrInf(const std::string& op_type,
                         const std::string& var_name,
176
                         const framework::Variable* var,
W
WangXi 已提交
177 178
                         const platform::Place& place) {
  PADDLE_ENFORCE_NOT_NULL(
179 180 181
      var,
      platform::errors::NotFound(
          "Cannot find var: `%s` in op `%s`.", var_name, op_type));
W
WangXi 已提交
182

183
  const phi::DenseTensor* tensor{nullptr};
184 185
  if (var->IsType<phi::DenseTensor>()) {
    tensor = &var->Get<phi::DenseTensor>();
186 187
  } else if (var->IsType<phi::SelectedRows>()) {
    tensor = &var->Get<phi::SelectedRows>().value();
W
WangXi 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201
  } else {
    VLOG(10) << var_name << " var_name need not to check";
    return;
  }

  if (tensor->memory_size() == 0) {
    VLOG(10) << var_name << " var_name need not to check, size == 0";
    return;
  }

  VLOG(10) << "begin check " << op_type << " var_name:" << var_name
           << ", place:" << tensor->place() << ", numel:" << tensor->numel();

  if (platform::is_gpu_place(tensor->place())) {
202
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
L
Leo Chen 已提交
203
    tensor_check<phi::GPUContext>(op_type, var_name, *tensor, place);
W
WangXi 已提交
204 205
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
206 207
        "phi::DenseTensor[%s] use gpu place. PaddlePaddle must compile "
        "with GPU.",
W
WangXi 已提交
208
        var_name));
209 210 211 212
#endif
    return;
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU
213 214
    if (framework::TransToProtoVarType(tensor->dtype()) !=
        proto::VarType::FP32) {
215 216 217 218
      return;
    }

    float* cpu_data = new float[tensor->numel()];
219 220
    memory::Copy(platform::CPUPlace(),
                 static_cast<void*>(cpu_data),
221
                 tensor->place(),
T
taixiurong 已提交
222 223
                 static_cast<const void*>(tensor->data<float>()),
                 tensor->numel() * sizeof(float));
224 225 226 227 228 229 230 231 232
    bool flag = false;
    for (int i = 0; i < tensor->numel(); i++) {
      if (isnan(cpu_data[i]) || isinf(cpu_data[i])) {
        flag = true;
        break;
      }
    }
    delete[] cpu_data;
    PADDLE_ENFORCE_NE(
233 234 235
        flag,
        true,
        platform::errors::Fatal(
236 237 238
            "Operator %s output phi::DenseTensor %s contains Inf.",
            op_type,
            var_name));
239 240
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
241 242
        "phi::DenseTensor[%s] use xpu place. PaddlePaddle must compile "
        "with XPU.",
243
        var_name));
244 245 246
#endif
    return;
  }
L
Leo Chen 已提交
247
  tensor_check<phi::CPUContext>(op_type, var_name, *tensor, place);
W
WangXi 已提交
248 249
}

250
void CheckVarHasNanOrInf(const std::string& op_type,
251
                         const framework::Scope& scope,
252 253 254 255 256 257
                         const std::string& var_name,
                         const platform::Place& place) {
  auto* var = scope.FindVar(var_name);
  CheckVarHasNanOrInf(op_type, var_name, var, place);
}

W
WangXi 已提交
258 259 260
bool IsSkipOp(const framework::OperatorBase& op) {
  if (op_type_nan_inf_white_list().count(op.Type()) != 0) return true;

261 262 263 264 265
  int op_role = 0;
  if (op.HasAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName())) {
    op_role = op.template Attr<int>(
        framework::OpProtoAndCheckerMaker::OpRoleAttrName());
  }
W
WangXi 已提交
266 267 268 269 270 271 272 273 274 275 276

  // kForward=0, can't filter
  if (op_role == static_cast<int>(framework::OpRole::kForward)) {
    op_role = FORWARD;
  }
  if (op_role_nan_inf_white_list & op_role) return true;

  return false;
}

void CheckOpHasNanOrInf(const framework::OperatorBase& op,
277
                        const framework::Scope& exec_scope,
W
WangXi 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
                        const platform::Place& place) {
  std::call_once(white_list_init_flag, InitWhiteListFormEnv);

  if (IsSkipOp(op)) return;

  if (op_var_nan_inf_white_list().count(op.Type()) == 0) {
    // NOTE. vname may destruct in the end of this func.
    for (auto& vname : op.OutputVars(true)) {
      auto* var = exec_scope.FindVar(vname);
      if (var == nullptr) continue;
      CheckVarHasNanOrInf(op.Type(), exec_scope, vname, place);
    }
  } else {
    for (auto& vname : op.OutputVars(true)) {
      bool need_check = true;
      for (auto& white_vname : op_var_nan_inf_white_list().at(op.Type())) {
        if (vname.find(white_vname) != std::string::npos) {
          need_check = false;
          break;
        }
      }
      if (!need_check) continue;
      auto* var = exec_scope.FindVar(vname);
      if (var == nullptr) continue;
      CheckVarHasNanOrInf(op.Type(), exec_scope, vname, place);
    }
  }
}

}  // namespace details
}  // namespace framework
}  // namespace paddle