testsuite.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import paddle.fluid.core as core
from paddle.fluid.op import Operator


def as_lodtensor(np_array, lod, place):
    tensor = core.LoDTensor()
    tensor.set(np_value, place)
    if lod is not None:
25
        tensor.set_recursive_sequence_lengths(lod)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    return tensor


def create_op(scope, op_type, inputs, outputs, attrs):
    kwargs = dict()

    op_maker = core.op_proto_and_checker_maker
    op_role_attr_name = op_maker.kOpRoleAttrName()

    if op_role_attr_name not in attrs:
        attrs[op_role_attr_name] = int(op_maker.OpRole.Forward)

    def __create_var__(name, var_name):
        scope.var(var_name).get_tensor()
        kwargs[name].append(var_name)

    for in_name, in_dup in Operator.get_op_inputs(op_type):
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
                for item in sub_in:
                    sub_in_name, _ = item[0], item[1]
                    __create_var__(in_name, sub_in_name)
            else:
                __create_var__(in_name, in_name)

    for out_name, out_dup in Operator.get_op_outputs(op_type):
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
                sub_out = outputs[out_name]
                for item in sub_out:
                    sub_out_name, _ = item[0], item[1]
                    __create_var__(out_name, sub_out_name)
            else:
                __create_var__(out_name, out_name)

    for attr_name in Operator.get_op_attr_names(op_type):
        if attr_name in attrs:
            kwargs[attr_name] = attrs[attr_name]

    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
    def __set_input__(var_name, var):
        if isinstance(var, tuple) or isinstance(var, np.ndarray):
            tensor = scope.find_var(var_name).get_tensor()
            if isinstance(var, tuple):
76
                tensor.set_recursive_sequence_lengths(var[1])
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
                var = var[0]
            tensor.set_dims(var.shape)
            tensor.set(var, place)
        elif isinstance(var, float):
            scope.find_var(var_name).set_float(var)
        elif isinstance(var, int):
            scope.find_var(var_name).set_int(var)

    for in_name, in_dup in Operator.get_op_inputs(op.type()):
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
                for item in sub_in:
                    sub_in_name, sub_in_val = item[0], item[1]
                    __set_input__(sub_in_name, sub_in_val)
            else:
                __set_input__(in_name, inputs[in_name])


def append_input_output(block, op_proto, np_list, is_input, dtype):
    '''Insert VarDesc and generate Python variable instance'''
    proto_list = op_proto.inputs if is_input else op_proto.outputs

    def create_var(block, name, np_list, var_proto):
        dtype = None
        shape = None
        lod_level = None
        if name not in np_list:
            assert var_proto.intermediate, "{} not found".format(name)
        else:
            np_value = np_list[name]
            if isinstance(np_value, tuple):
                dtype = np_value[0].dtype
                # output shape, lod should be infered from input.
                if is_input:
                    shape = list(np_value[0].shape)
                    lod_level = len(np_value[1])
            else:
                dtype = np_value.dtype
                if is_input:
                    shape = list(np_value.shape)
                    lod_level = 0
        return block.create_var(
            dtype=dtype, shape=shape, lod_level=lod_level, name=name)

    var_dict = {}
    for var_proto in proto_list:
        var_name = str(var_proto.name)
        if is_input:
            if (var_name not in np_list) and var_proto.dispensable:
                continue
            assert (var_name in np_list) or (var_proto.dispensable), \
                "Missing {} as input".format(var_name)
        if var_proto.duplicable:
            assert isinstance(np_list[var_name], list), \
                "Duplicable {} should be set as list".format(var_name)
            var_list = []
            for (name, np_value) in np_list[var_name]:
                var_list.append(
                    create_var(block, name, {name: np_value}, var_proto))
            var_dict[var_name] = var_list
        else:
            var_dict[var_name] = create_var(block, var_name, np_list, var_proto)

    return var_dict


def append_loss_ops(block, output_names):
    mean_inputs = map(block.var, output_names)
    # for item in mean_inputs:
    #     print(item)
    #     print("Item", item.dtype)

    if len(mean_inputs) == 1:
        loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1])
        op = block.append_op(
            inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean')
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
    else:
        avg_sum = []
        for cur_loss in mean_inputs:
            cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1])
            op = block.append_op(
                inputs={"X": [cur_loss]},
                outputs={"Out": [cur_avg_loss]},
                type="mean")
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
            avg_sum.append(cur_avg_loss)

        loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1])
        op_sum = block.append_op(
            inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum')
        op_sum.desc.infer_var_type(block.desc)
        op_sum.desc.infer_shape(block.desc)

        loss = block.create_var(dtype=loss_sum.dtype, shape=[1])
        op_loss = block.append_op(
            inputs={"X": loss_sum},
            outputs={"Out": loss},
            type='scale',
            attrs={'scale': 1.0 / float(len(avg_sum))})
        op_loss.desc.infer_var_type(block.desc)
        op_loss.desc.infer_shape(block.desc)
    return loss