crf_decoding_op.h 4.4 KB
Newer Older
C
Cao Ying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using framework::LoDTensor;
using framework::LoD;
using framework::Tensor;

Q
QI JUN 已提交
27
template <typename DeviceContext, typename T>
C
Cao Ying 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
class CRFDecodingOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* emission_weights = ctx.Input<LoDTensor>("Emission");
    auto* transition_weights = ctx.Input<Tensor>("Transition");
    auto* label = ctx.Input<LoDTensor>("Label");
    auto* decoded_path = ctx.Output<Tensor>("ViterbiPath");

    PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL,
                      "The Input(Emission) should be a sequence.");
    auto lod = emission_weights->lod();
    PADDLE_ENFORCE(lod.size(), "Input(Emission) must be a sequence.");
    const size_t level = 0;
    const size_t seq_num = lod[level].size() - 1;

Q
Qiao Longfei 已提交
43
    int64_t* path = decoded_path->mutable_data<int64_t>(platform::CPUPlace());
Q
QI JUN 已提交
44 45
    math::SetConstant<DeviceContext, int64_t>()(
        ctx.template device_context<DeviceContext>(), decoded_path, 0);
C
Cao Ying 已提交
46 47 48 49 50 51 52 53 54 55 56
    for (size_t i = 0; i < seq_num; ++i) {
      int start_pos = static_cast<int>(lod[level][i]);
      int end_pos = static_cast<int>(lod[level][i + 1]);
      Tensor decoded_path_one_seq = decoded_path->Slice(start_pos, end_pos);
      Decode(emission_weights->Slice(start_pos, end_pos), *transition_weights,
             &decoded_path_one_seq);
    }

    if (label) {
      PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL,
                        "The Input(Label) should be a sequence.");
Q
Qiao Longfei 已提交
57
      const int64_t* label_value = label->data<int64_t>();
C
Cao Ying 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
      size_t batch_size = emission_weights->dims()[0];
      for (size_t i = 0; i < batch_size; ++i) {
        path[i] = label_value[i] == path[i] ? 1 : 0;
      }
    }
  }

 private:
  void Decode(const Tensor& emission_weights, const Tensor& transition_weights,
              Tensor* decoded_path) const {
    auto emission_dims = emission_weights.dims();
    const size_t seq_len = emission_dims[0];
    const size_t tag_num = emission_dims[1];

    const size_t state_trans_base_idx = 2;

    const T* x = emission_weights.data<T>();
    const T* w = transition_weights.data<T>();
Q
Qiao Longfei 已提交
76
    int64_t* path = decoded_path->data<int64_t>();
C
Cao Ying 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

    // alpha is a memo table. An element alpha(k, v) records the score of the
    // best sequence of tags from position 1 to position k with v being the end
    // tag.
    Tensor alpha;
    T* alpha_value = alpha.mutable_data<T>(emission_dims, platform::CPUPlace());
    Tensor track;
    int* track_value =
        track.mutable_data<int>(emission_dims, platform::CPUPlace());

    for (size_t i = 0; i < tag_num; ++i) alpha_value[i] = w[i] + x[i];

    for (size_t k = 1; k < seq_len; ++k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T max_score = -std::numeric_limits<T>::max();
        int max_j = 0;
        for (size_t j = 0; j < tag_num; ++j) {
          T score = alpha_value[(k - 1) * tag_num + j] +
                    w[(j + state_trans_base_idx) * tag_num + i];
          if (score > max_score) {
            max_score = score;
            max_j = j;
          }
        }

        alpha_value[k * tag_num + i] = max_score + x[k * tag_num + i];
        track_value[k * tag_num + i] = max_j;
      }
    }

    T max_score = -std::numeric_limits<T>::max();
    int max_i = 0;
    for (size_t i = 0; i < tag_num; ++i) {
      T score = alpha_value[(seq_len - 1) * tag_num + i] + w[tag_num + i];
      if (score > max_score) {
        max_score = score;
        max_i = i;
      }
    }
    path[seq_len - 1] = max_i;
    for (int k = seq_len - 1; k >= 1; --k) {
      path[k - 1] = max_i = track_value[k * tag_num + max_i];
    }
  }
};

}  // namespace operators
}  // namespace paddle