roll_op.h 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DDim = framework::DDim;

template <typename T>
inline void shift_along_dim(T* data, const DDim& input_dim, int64_t dim,
                            int64_t shift) {
  if (dim < 0) {
    dim += input_dim.size();
  }
  shift = shift % input_dim[dim];
  if (shift < 0) {
    shift += input_dim[dim];
  }

  auto outer_loops = 1;
  for (auto i = 0; i < dim; i++) {
    outer_loops *= input_dim[i];
  }
  auto slice_width = 1;
  for (auto i = dim + 1; i < input_dim.size(); i++) {
    slice_width *= input_dim[i];
  }

  VLOG(3) << "shift_along_dim_debug: input_dim: " << input_dim
          << "; dim: " << dim << "; shift: " << shift
          << "; outer_loops: " << outer_loops
          << "; slice_width: " << slice_width;
  if (shift == 0) {
    return;
  }

  std::vector<T> head;
  auto head_size = slice_width * (input_dim[dim] - shift);
  head.resize(head_size);

  for (auto i = 0; i < outer_loops; i++) {
    for (auto j = 0; j < head_size; j++) {
      head[j] = data[i * input_dim[dim] * slice_width + j];
    }
    for (auto j = input_dim[dim] - shift; j < input_dim[dim]; j++) {
      auto dst_pos = j - input_dim[dim] + shift;
      for (auto k = 0; k < slice_width; k++) {
        data[(i * input_dim[dim] + dst_pos) * slice_width + k] =
            data[(i * input_dim[dim] + j) * slice_width + k];
      }
    }
    for (auto j = 0; j < head_size; j++) {
      data[(i * input_dim[dim] + shift) * slice_width + j] = head[j];
    }
  }
}

template <typename DeviceContext, typename T>
class RollKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* input_var = context.InputVar("X");
    auto* output_var = context.OutputVar("Out");
    auto& input = input_var->Get<LoDTensor>();
    auto* output = output_var->GetMutable<LoDTensor>();
    std::vector<int64_t> shifts = context.Attr<std::vector<int64_t>>("shifts");
    std::vector<int64_t> dims = context.Attr<std::vector<int64_t>>("dims");

    std::vector<T> out_vec;
    TensorToVector(input, context.device_context(), &out_vec);

    size_t nums = shifts.size();
    const DDim input_dim = input.dims();

    for (size_t i = 0; i < nums; i++) {
      PADDLE_ENFORCE_EQ(
          dims[i] < input_dim.size() && dims[i] >= (0 - input_dim.size()), true,
          platform::errors::OutOfRange(
              "Attr(dims[%d]) is out of range, It's expected "
              "to be in range of [-%d, %d]. But received Attr(dims[%d]) = %d.",
              i, input_dim.size(), input_dim.size() - 1, i, dims[i]));
      shift_along_dim(out_vec.data(), input_dim, dims[i], shifts[i]);
    }
    output->mutable_data<T>(context.GetPlace());
    framework::TensorFromVector(out_vec, context.device_context(), output);
    output->Resize(input_dim);
  }
};

template <typename DeviceContext, typename T>
class RollGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* input_var = context.InputVar(framework::GradVarName("Out"));
    auto* output_var = context.OutputVar(framework::GradVarName("X"));
    auto& input = input_var->Get<LoDTensor>();
    auto* output = output_var->GetMutable<LoDTensor>();
    std::vector<int64_t> shifts = context.Attr<std::vector<int64_t>>("shifts");
    std::vector<int64_t> dims = context.Attr<std::vector<int64_t>>("dims");

    std::vector<T> out_vec;
    TensorToVector(input, context.device_context(), &out_vec);

    size_t nums = shifts.size();
    const DDim input_dim = input.dims();

    for (size_t i = 0; i < nums; i++) {
      shift_along_dim(out_vec.data(), input_dim, dims[i], 0 - shifts[i]);
    }
    output->mutable_data<T>(context.GetPlace());
    framework::TensorFromVector(out_vec, context.device_context(), output);
    output->Resize(input_dim);
  }
};

}  // namespace operators
}  // namespace paddle