op_gen.py 73.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import yaml

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else
31
// This file is generated by "paddle/fluid/ir/dialect/op_gen.py"
32

33 34
#include <vector>

35 36
#include "paddle/ir/core/builder.h"
#include "paddle/ir/core/operation_utils.h"
37
#include "paddle/ir/core/op_base.h"
38
#include "paddle/fluid/ir/dialect/utils.h"
39
#include "paddle/fluid/ir/interface/op_yaml_info.h"
40
#include "paddle/fluid/ir/interface/infershape.h"
H
hong 已提交
41 42 43
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"

44 45 46 47 48 49 50 51 52 53 54 55 56 57
{input}
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
58
  static OpInfoTuple GetOpInfo();
59
  static void Build({build_args});
60
  {build_mutable_attr_is_input}
61
  static void Verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes);
62
{get_inputs_and_outputs}
H
hong 已提交
63
{exclusive_interface}
64 65 66 67 68 69 70 71 72
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

73
OP_GET_INPUT_TEMPLATE = """  ir::OpOperand {input_name}() {{ return operation()->operand({input_index}); }}
74
"""
75
OP_GET_OUTPUT_TEMPLATE = """  ir::OpResult {output_name}() {{ return operation()->result({output_index}); }}
76 77 78 79 80
"""

# =====================================
# String Template for cc file code gen
# =====================================
81 82 83
CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_gen.py"

#include "{h_file}"
84 85
#include "paddle/fluid/ir/dialect/pd_type.h"
#include "paddle/fluid/ir/dialect/pd_attribute.h"
86 87
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
88
#include "paddle/ir/core/builtin_op.h"
89
#include "paddle/ir/core/ir_context.h"
90
#include "paddle/phi/core/enforce.h"
91 92 93 94 95 96 97
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/backward.h"
98
#include "paddle/phi/api/lib/utils/allocator.h"
99

100 101 102 103 104 105 106
{input}
"""

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

107
# get op info
108 109
OP_INFO_TEMPLATE = """
OpInfoTuple {op_name}::GetOpInfo() {{
110 111 112
  std::vector<paddle::dialect::OpInputInfo> inputs = {{ {inputs} }};
  std::vector<paddle::dialect::OpAttributeInfo> attributes = {{ {attributes} }};
  std::vector<paddle::dialect::OpOutputInfo> outputs = {{ {outputs} }};
113 114
  paddle::dialect::OpRunTimeInfo run_time_info = OpRunTimeInfo("{infer_meta_func}", {{"{infer_meta_param}"}}, {{"{kernel_func}"}}, {{"{kernel_param}"}}, {{"{kernel_key_dtype}"}}, {{{inplace}}}, {{{view}}});

115
  return std::make_tuple(inputs, attributes, outputs, run_time_info);
116 117
}}
"""
118
CONSTRUCT_INPUT_INFO_TEMPLATE = """OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer}, {is_mutable_attribute})"""
119 120 121 122 123 124 125
CONSTRUCT_OUTPUT_INFO_TEMPLATE = (
    """OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})"""
)
CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = (
    """OpAttributeInfo("{name}", "{typename}", "{data_type}")"""
)

126 127
# build
OP_BUILD_TEMPLATE = """
128
void {op_name}::Build({build_args}) {{
129
{build_mutable_attributes}
130 131 132 133 134 135
{build_inputs}
{build_attributes}
{build_outputs}
}}
"""

136
# verify
137
OP_VERIFY_TEMPLATE = """
138
void {op_name}::Verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes) {{
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  VLOG(4) << "Verifying inputs, outputs and attributes for: {op_name}.";

  // Verify inputs type:
  PADDLE_ENFORCE_EQ(inputs.size(), {inputs_size},
                    phi::errors::PreconditionNotMet("The size %d of inputs must be equal to {inputs_size}.", inputs.size()));
  {inputs_type_check}
  // Verify outputs type:
  PADDLE_ENFORCE_EQ(outputs.size(), {outputs_size},
                    phi::errors::PreconditionNotMet("The size %d of outputs must be equal to {outputs_size}.", outputs.size()));
  {outputs_type_check}
  // Verify if attributes contain attribute name in attributes_name:
  {attributes_check}
}}
"""

154
GRAD_OP_VERIFY_TEMPLATE = """
155
void {op_name}::Verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes) {{
156 157 158 159 160 161
  (void)inputs;
  (void)outputs;
  (void)attributes;
}}
"""

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
INPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                    phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  """
INPUT_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}].type().isa<ir::VectorType>()) {{
    for (size_t i = 0; i < inputs[{index}].type().dyn_cast<ir::VectorType>().size(); i++) {{
      PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
    }}
  }} else {{
    PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  }}
  """
INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{
    PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  }}
  """
INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{
    if (inputs[{index}].type().isa<ir::VectorType>()) {{
      for (size_t i = 0; i < inputs[{index}].type().dyn_cast<ir::VectorType>().size(); i++) {{
        PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                          phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
      }}
    }} else {{
      PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
    }}
  }}
  """

OUTPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                    phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  """
OUTPUT_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}].isa<ir::VectorType>()) {{
    for (size_t i = 0; i < outputs[{index}].dyn_cast<ir::VectorType>().size(); i++) {{
      PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
    }}
  }} else {{
    PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  }}
  """
OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{
    PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  }}
  """
OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{
    if (outputs[{index}].isa<ir::VectorType>()) {{
      for (size_t i = 0; i < outputs[{index}].dyn_cast<ir::VectorType>().size(); i++) {{
        PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                          phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
      }}
    }} else {{
      PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
    }}
  }}
  """

224
ATTRIBUTE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.count("{attribute_name}")>0 && attributes.at("{attribute_name}").isa<{standard}>(), true,
225 226
                    phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  """
227
ATTRIBUTE_VECTOR_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.count("{attribute_name}")>0 && attributes.at("{attribute_name}").isa<ir::ArrayAttribute>(), true,
228 229 230 231 232 233
                    phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  for (size_t i = 0; i < attributes.at("{attribute_name}").dyn_cast<ir::ArrayAttribute>().size(); i++) {{
    PADDLE_ENFORCE_EQ(attributes.at("{attribute_name}").dyn_cast<ir::ArrayAttribute>()[i].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  }}
  """
H
hong 已提交
234 235 236 237 238 239
OP_INFER_SHAPE_TEMPLATE = """
void {op_name}::InferShape( phi::InferMetaContext *infer_meta ) {{
  auto fn = PD_INFER_META(phi::{infer_meta_func});
  fn(infer_meta);
}}
"""
240 241


242 243 244 245 246 247 248 249 250 251 252 253
def to_phi_and_fluid_op_name(op_item):
    # Templat: - op : phi_name (fluid_name)
    names = op_item.split('(')
    if len(names) == 1:
        phi_fluid_name = names[0].strip()
        return phi_fluid_name, phi_fluid_name
    else:
        phi_name = names[0].strip()
        fluid_name = names[1].split(')')[0].strip()
        return phi_name, fluid_name


254
scalar_type_maps = {
Z
zhangbo9674 已提交
255 256
    'int': 'ir::Int32Attribute',
    'int64_t': 'ir::Int64Attribute',
257 258 259 260 261 262
    'float': 'ir::FloatAttribute',
    'dobule': 'ir::DoubleAttribute',
    'bool': 'ir::BoolAttribute',
}


263
# =====================================
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
# Parse Op Compat From Yaml
# =====================================
class OpCompatParser:
    def __init__(self, ops_compat_yaml_file):
        self.ops_compat_yaml_file = ops_compat_yaml_file
        with open(self.ops_compat_yaml_file, "r") as f:
            self.ops_compat = yaml.safe_load(f)

    def get_compat(self, op_name):
        for compat in self.ops_compat:
            phi_name, fluid_name = to_phi_and_fluid_op_name(compat['op'])
            if op_name == phi_name:
                return compat
        return None


# =====================================
# Parse Op Information From Yaml
282 283
# =====================================
class OpInfoParser:
284
    def __init__(self, op_yaml_item, op_compat_item):
285
        self.op_yaml_item = op_yaml_item
286
        self.op_compat_item = op_compat_item
287
        self.op_phi_name = self.parse_op_phi_name()
288
        # parse inputs
289 290 291
        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
292
        self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list()
293 294 295
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )
296

297
        # parse outputs
298 299
        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
300
        self.output_size_list = self.parse_output_size_list()
301
        self.output_optional_list = self.parse_output_optional_list()
302
        self.output_intermediate_list = self.parse_output_intermediate_list()
303 304 305 306 307
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )
308

309
        # parse attributes
310 311 312
        self.attr_types_map = {
            'IntArray': ['paddle::dialect::IntArrayAttribute', 'IntArray'],
            'Scalar': ['paddle::dialect::ScalarAttribute', 'Scalar'],
Z
zhangbo9674 已提交
313 314
            'Scalar(int)': ['ir::Int32Attribute', 'int'],
            'Scalar(int64_t)': ['ir::Int64Attribute', 'int64_t'],
315 316
            'Scalar(float)': ['ir::FloatAttribute', 'float'],
            'Scalar(dobule)': ['ir::DoubleAttribute', 'dobule'],
317 318
            'Scalar[]': [
                'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
319
                'const std::vector<Scalar>&',
320
            ],
Z
zhangbo9674 已提交
321 322 323
            'int': ['ir::Int32Attribute', 'int'],
            'int32_t': ['ir::Int32Attribute', 'int32_t'],
            'int64_t': ['ir::Int64Attribute', 'int64_t'],
324 325 326 327 328
            'long': ['ir::LongAttribute', 'long'],
            'size_t': ['ir::Size_tAttribute', 'size_t'],
            'float': ['ir::FloatAttribute', 'float'],
            'float[]': [
                'ir::ArrayAttribute<ir::FloatAttribute>',
329
                'const std::vector<float>&',
330 331 332 333 334
            ],
            'double': ['ir::DoubleAttribute', 'double'],
            'bool': ['ir::BoolAttribute', 'bool'],
            'bool[]': [
                'ir::ArrayAttribute<ir::BoolAttribute>',
335
                'const std::vecot<bool>&',
336 337 338 339
            ],
            'str': ['ir::StrAttribute', 'std::string'],
            'str[]': [
                'ir::ArrayAttribute<ir::StrAttribute>',
340
                'const std::vector<std::string>&',
341 342 343 344 345 346 347 348
            ],
            'Place': ['paddle::dialect::PlaceAttribute', 'Place'],
            'DataLayout': [
                'paddle::dialect::DataLayoutAttribute',
                'DataLayout',
            ],
            'DataType': ['paddle::dialect::DataTypeAttribute', 'DataType'],
            'int64_t[]': [
Z
zhangbo9674 已提交
349
                'ir::ArrayAttribute<ir::Int64Attribute>',
350
                'const std::vector<int64_t>&',
351 352
            ],
            'int[]': [
Z
zhangbo9674 已提交
353
                'ir::ArrayAttribute<ir::Int32Attribute>',
354
                'const std::vector<int>&',
355 356
            ],
        }
357 358
        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
359 360 361
        self.attribute_build_arg_type_list = (
            self.parse_attribute_build_arg_type_list()
        )
362
        self.attribute_data_type_list = self.parse_attribute_data_type_list()
363 364 365
        self.attribute_default_value_list = (
            self.parse_attribute_default_value_list()
        )
366 367
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

368 369 370 371 372 373
        # parse mutable attributes (as inputs)
        (
            self.mutable_attribute_name_list,
            self.mutable_attribute_type_list,
        ) = self.parse_mutable_attribute()

374 375 376 377 378 379 380 381
        (
            self.non_mutable_attribute_name_list,
            self.non_mutable_attribute_type_list,
            self.non_mutable_attribute_data_type_list,
            self.non_mutable_attribute_build_arg_type_list,
            self.non_mutable_attribute_default_value_list,
        ) = self.parse_non_nutable_attribute()

382 383 384
        # parse infermeta && kernel
        self.infer_meta_map = self.parse_infer_meta_map()
        self.kernel_map = self.parse_kernel_map()
H
hong 已提交
385 386 387 388 389
        if 'infer_meta' in self.op_yaml_item:
            self.infer_shape_func = self.op_yaml_item['infer_meta']["func"]
        else:
            self.infer_shape_func = None

390 391 392 393
        # parse inplace && view
        self.inplace_map = self.parse_op_inplace_info()
        self.view_map = self.parse_op_view_info()

394 395 396 397 398 399 400 401 402
    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

403
    def parse_op_phi_name(self):
404 405 406
        if (self.parse_op_inplace_info() is None) and (
            self.parse_op_view_info() is None
        ):
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
            return [self.op_yaml_item['name']]
        else:
            if self.op_yaml_item['name'][-1] == "_":
                return [self.op_yaml_item['name']]
            else:
                return [
                    self.op_yaml_item['name'],
                    self.op_yaml_item['name'] + "_",
                ]

    def parse_op_inplace_info(self):
        if 'inplace' in self.op_yaml_item:
            return self.op_yaml_item['inplace']
        return None

422 423 424 425 426
    def parse_op_view_info(self):
        if 'view' in self.op_yaml_item:
            return self.op_yaml_item['view']
        return None

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    def parse_mutable_attribute(self):
        """
        {'axis': 'paddle::dialect::ScalarAttribute', 'rotl': 'paddle::dialect::IntArrayAttribute'}
        """
        mutable_attribute_name_list = []
        mutable_attribute_type_list = []
        # scalar
        if (self.op_compat_item is not None) and (
            'scalar' in self.op_compat_item
        ):
            for scalar_attr in self.op_compat_item['scalar'].keys():
                if 'data_type' in self.op_compat_item['scalar'][scalar_attr]:
                    if (
                        self.op_compat_item['scalar'][scalar_attr]['data_type']
                        == "std::string"
                    ):
                        # see isclose and allclose in op_compat.yaml
                        mutable_attribute_name_list.append(scalar_attr)
                        mutable_attribute_type_list.append(
                            ["ir::StrAttribute", "std::string"]
                        )
                    else:
449 450 451 452 453 454 455
                        if (
                            scalar_attr == "depth"
                            and self.op_phi_name[0] == "one_hot"
                        ):
                            mutable_attribute_name_list.append("num_classes")
                        else:
                            mutable_attribute_name_list.append(scalar_attr)
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
                        mutable_attribute_type_list.append(
                            [
                                "paddle::dialect::ScalarAttribute",
                                self.op_compat_item['scalar'][scalar_attr][
                                    'data_type'
                                ],
                            ]
                        )
                # See eye in op_compat.yaml
                else:
                    mutable_attribute_name_list.append(scalar_attr)
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            self.attribute_data_type_list[
                                self.attribute_name_list.index(scalar_attr)
                            ],
                        ]
                    )

        # int_array
        if (self.op_compat_item is not None) and (
            'int_array' in self.op_compat_item
        ):
            for int_array_attr in self.op_compat_item['int_array']:
                mutable_attribute_name_list.append(int_array_attr)
                mutable_attribute_type_list.append(
                    [
                        "paddle::dialect::IntArrayAttribute",
                        self.op_compat_item['int_array'][int_array_attr][
                            'data_type'
                        ],
                    ]
                )
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        sorted_mutable_attribute_name_list = []
        sorted_mutable_attribute_type_list = []
        for attr_name in self.attribute_name_list:
            if attr_name in mutable_attribute_name_list:
                sorted_mutable_attribute_name_list.append(attr_name)
                sorted_mutable_attribute_type_list.append(
                    mutable_attribute_type_list[
                        mutable_attribute_name_list.index(attr_name)
                    ]
                )

        return (
            sorted_mutable_attribute_name_list,
            sorted_mutable_attribute_type_list,
        )

    def parse_non_nutable_attribute(self):
        op_non_mutable_attribute_name_list = []
        op_non_mutable_attribute_type_list = []
        op_non_mutable_attribute_data_type_list = []
        op_non_mutable_attribute_build_arg_type_list = []
        op_non_mutable_attribute_default_value_list = []
        for idx in range(len(self.attribute_name_list)):
            if (
                self.attribute_name_list[idx]
                not in self.mutable_attribute_name_list
            ):
                op_non_mutable_attribute_name_list.append(
                    self.attribute_name_list[idx]
                )
                op_non_mutable_attribute_type_list.append(
                    self.attribute_type_list[idx]
                )
                op_non_mutable_attribute_data_type_list.append(
                    self.attribute_data_type_list[idx]
                )
                op_non_mutable_attribute_build_arg_type_list.append(
                    self.attribute_build_arg_type_list[idx]
                )
                op_non_mutable_attribute_default_value_list.append(
                    self.attribute_default_value_list[idx]
                )
        return (
            op_non_mutable_attribute_name_list,
            op_non_mutable_attribute_type_list,
            op_non_mutable_attribute_data_type_list,
            op_non_mutable_attribute_build_arg_type_list,
            op_non_mutable_attribute_default_value_list,
        )
539

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
562 563 564 565
            if input_info['optional']:
                optional_list.append("true")
            else:
                optional_list.append("false")
566 567
        return optional_list

568 569 570 571 572 573 574 575 576
    def parse_input_no_need_buffer_list(self):
        no_need_buffer_list = []
        for input_info in self.op_yaml_item['inputs']:
            if input_info['no_need_buffer']:
                no_need_buffer_list.append("true")
            else:
                no_need_buffer_list.append("false")
        return no_need_buffer_list

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

596 597 598 599 600 601 602 603 604
    def parse_output_size_list(self):
        size_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'size' in output_info:
                size_list.append(output_info['size'])
            else:
                size_list.append(None)
        return size_list

605 606 607 608
    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
609 610 611 612
                if output_info['optional']:
                    optional_list.append("true")
                else:
                    optional_list.append("false")
613
            else:
614
                optional_list.append("false")
615 616
        return optional_list

617 618 619 620 621 622 623 624 625 626 627 628
    def parse_output_intermediate_list(self):
        intermediate_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'intermediate' in output_info:
                if output_info['intermediate']:
                    intermediate_list.append("true")
                else:
                    intermediate_list.append("false")
            else:
                intermediate_list.append("false")
        return intermediate_list

629 630 631 632 633 634
    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    def parse_attribute_build_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            # Scalar & IntArray has data_type
            temp_type = self.attr_types_map[attribute_info['typename']][1]
            if 'Scalar' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            if 'IntArray' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

653 654 655 656
    def parse_attribute_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
657
                attribute_info['typename'] in self.attr_types_map
658
            ), f"{self.op_phi_name} : Attr type error."
659
            type_list.append(self.attr_types_map[attribute_info['typename']][0])
660 661
        return type_list

662 663 664 665 666 667 668 669 670
    def parse_attribute_data_type_list(self):
        data_type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'data_type' in attribute_info:
                data_type_list.append(attribute_info['data_type'])
            else:
                data_type_list.append("")
        return data_type_list

671 672 673 674 675 676 677 678
    def parse_attribute_default_value_list(self):
        default_value_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'default_value' in attribute_info:
                default_value = attribute_info['default_value']
                default_value_list.append(
                    self.get_phi_dtype_name(default_value)
                )
679
            else:
680 681
                default_value_list.append(None)
        return default_value_list
682

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    def parse_infer_meta_map(self):
        if 'infer_meta' in self.op_yaml_item:
            return self.op_yaml_item['infer_meta']
        else:
            return None

    def parse_kernel_map(self):
        if 'kernel' in self.op_yaml_item:
            return self.op_yaml_item['kernel']
        else:
            return None

    def get_phi_dtype_name(self, name):
        name = name.replace('Scalar', 'phi::Scalar')
        name = name.replace('IntArray', 'phi::IntArray')
        name = name.replace('DataLayout', 'phi::DataLayout')
        name = name.replace('DataType', 'phi::DataType')
        if name.startswith(
            (
                "Place",
                "CPUPlace",
                "GPUPlace",
                "GPUPinnedPlace",
                "XPUPlace",
                "IPUPlace",
                "CustomPlace",
            )
        ):
            return "phi::" + name
        return name
713 714 715 716 717 718 719 720 721 722 723


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


# =====================================
724
# Generate Op Definition Files
725
# =====================================
726 727
def GenBuildInputArgsStr(
    op_input_name_list,
728 729 730
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_attribute_default_value_list,
731 732 733 734
    op_mutable_attribute_name_list,
    op_non_mutable_attribute_name_list,
    op_non_mutable_attribute_build_arg_type_list,
    op_non_mutable_attribute_default_value_list,
735
    for_func_define=True,
736
    mutable_attr_is_input=False,
737 738
):
    '''
739
    Example: ir::Builder &builder, ir::OperationArgument &argument, ir::OpResult x_, phi::DataType dtype=phi::DataType::UNDEFINED, phi::Place place={}
740
    '''
741
    # add inputs
742
    build_args_str = "ir::Builder &builder, ir::OperationArgument &argument"
743 744 745
    if len(op_input_name_list) > 0:
        for input_name in op_input_name_list:
            build_args_str += ", ir::OpResult " + input_name + "_"
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

    if not mutable_attr_is_input:
        # add attributes
        for attr_idx in range(len(op_attribute_name_list)):
            build_args_str += (
                ", "
                + op_attribute_build_arg_type_list[attr_idx]
                + " "
                + op_attribute_name_list[attr_idx]
            )
            if for_func_define:
                if op_attribute_default_value_list[attr_idx] is not None:
                    default_value = op_attribute_default_value_list[attr_idx]
                    if (
                        op_attribute_build_arg_type_list[attr_idx]
                        != "std::string"
                    ):
                        if default_value[0] == "'" or default_value[0] == '"':
                            default_value = default_value[1:]
                        if default_value[-1] == "'" or default_value[-1] == '"':
                            default_value = default_value[0:-1]
                    build_args_str += "=" + default_value
    else:
        # add mutable attributes as inputs
        if len(op_mutable_attribute_name_list) > 0:
            for mutable_attr in op_mutable_attribute_name_list:
                build_args_str += ", ir::OpResult " + mutable_attr + "_"

        # add non-mutable attributes
        for attr_idx in range(len(op_non_mutable_attribute_name_list)):
            build_args_str += (
                ", "
                + op_non_mutable_attribute_build_arg_type_list[attr_idx]
                + " "
                + op_non_mutable_attribute_name_list[attr_idx]
            )
            if for_func_define:
783
                if (
784 785
                    op_non_mutable_attribute_default_value_list[attr_idx]
                    is not None
786
                ):
787 788 789 790 791 792 793 794 795 796 797 798 799
                    default_value = op_non_mutable_attribute_default_value_list[
                        attr_idx
                    ]
                    if (
                        op_non_mutable_attribute_build_arg_type_list[attr_idx]
                        != "std::string"
                    ):
                        if default_value[0] == "'" or default_value[0] == '"':
                            default_value = default_value[1:]
                        if default_value[-1] == "'" or default_value[-1] == '"':
                            default_value = default_value[0:-1]
                    build_args_str += "=" + default_value

800 801 802
    return build_args_str


803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
mutable_attribute_phi_type_maps = {
    'int': 'phi::DataType::INT32',
    'int64_t': 'phi::DataType::INT64',
    'float': 'phi::DataType::FLOAT32',
    'std::vector<int64_t>': 'phi::DataType::INT64',
    'const std::vector<int64_t>&': 'phi::DataType::INT64',
}


def GenBuildInserFullForMutableAttribute(
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
):
    build_mutable_attribute = ""
    BUILD_INTARRAY_ATTRIBUTE_TEMPLATE = """  // Generate int_array mutable attribute: {attr_name}
  paddle::dialect::FullIntArrayOp full_{attr_name}_op = builder.Build<paddle::dialect::FullIntArrayOp>({attr_name}, {phi_dtype}, phi::CPUPlace());
821
  ir::OpResult {attr_name}_ = full_{attr_name}_op->result(0);
822 823 824
    """
    BUILD_SCALAR_ATTRIBUTE_TEMPLATE = """  // Generate scalar mutable attribute: {attr_name}
  paddle::dialect::FullOp full_{attr_name}_op = builder.Build<paddle::dialect::FullOp>(std::vector<int64_t>{{1}}, {attr_name}, {phi_dtype}, phi::CPUPlace());
825
  ir::OpResult {attr_name}_ = full_{attr_name}_op->result(0);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
    """
    for idx in range(len(op_mutable_attribute_name_list)):
        attr_name = op_mutable_attribute_name_list[idx]
        attr_type = op_mutable_attribute_type_list[idx][0]
        if attr_name in op_attribute_name_list:
            phi_dtype = mutable_attribute_phi_type_maps[
                op_attribute_build_arg_type_list[
                    op_attribute_name_list.index(attr_name)
                ]
            ]
        else:
            phi_dtype = mutable_attribute_phi_type_maps[
                op_mutable_attribute_type_list[idx][1]
            ]
        if attr_type == "paddle::dialect::IntArrayAttribute":
            build_mutable_attribute += BUILD_INTARRAY_ATTRIBUTE_TEMPLATE.format(
                attr_name=attr_name, phi_dtype=phi_dtype
            )
        else:
            build_mutable_attribute += BUILD_SCALAR_ATTRIBUTE_TEMPLATE.format(
                attr_name=attr_name, phi_dtype=phi_dtype
            )
    return build_mutable_attribute


851
def GenBuildInputs(op_input_name_list, op_mutable_attribute_name_list):
852
    BUILD_INPUT_TEMPLATE = """  std::vector<ir::OpResult> argument_inputs = {{{inputs_args}}};
853
  argument.AddOperands(argument_inputs.begin(), argument_inputs.end());
854
"""
855 856 857 858 859 860
    build_input_str = '  VLOG(4) << "Builder construction inputs";\n'
    input_name_list = op_input_name_list + op_mutable_attribute_name_list
    if len(input_name_list) > 0:
        inputs_args_str = ""
        inputs_args_str += "_, ".join(input_name_list) + "_"
        build_input_str += BUILD_INPUT_TEMPLATE.format(
861 862 863 864 865
            inputs_args=inputs_args_str
        )
    return build_input_str


866 867 868
def GenBuildAttributes(
    op_non_mutable_attribute_name_list, op_non_mutable_attribute_type_list
):
869 870
    INTARRAY_STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), phi::IntArray({attr}));
"""
871
    SCALAR_STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = TransToIrAttribute({attr}, ir::IrContext::Instance());
872 873 874 875 876 877 878 879 880 881
"""
    STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), {attr});
"""
    ARRAY_ATTRIBUTE_TEMPLATE = """  std::vector<ir::Attribute> vec_{attr_name};
  for (size_t i = 0; i < static_cast<size_t>({attr_size}); i++) {{
    {create_attribute}
    vec_{attr_name}.push_back(attr_{attr_name});
  }}
  ir::Attribute attr_{attr_name} = ir::ArrayAttribute::get(ir::IrContext::Instance(), vec_{attr_name});
"""
882 883 884 885 886 887
    attr_str = '  VLOG(4) << "Builder construction attributes";\n'
    for idx in range(len(op_non_mutable_attribute_name_list)):
        if "ir::ArrayAttribute<" in op_non_mutable_attribute_type_list[idx]:
            inner_attribute_type = op_non_mutable_attribute_type_list[idx][
                19:-1
            ]
888 889
            if inner_attribute_type == "paddle::dialect::IntArrayAttribute":
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
890 891 892
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
893
                    create_attribute=INTARRAY_STR_TEMPLATE.format(
894
                        attr_name=op_non_mutable_attribute_name_list[idx],
895
                        op_attribute_type=inner_attribute_type,
896
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
897 898 899 900
                    ),
                )
            elif inner_attribute_type == "paddle::dialect::ScalarAttribute":
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
901 902 903
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
904
                    create_attribute=SCALAR_STR_TEMPLATE.format(
905 906
                        attr_name=op_non_mutable_attribute_name_list[idx],
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
907 908 909 910
                    ),
                )
            else:
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
911 912 913
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
914
                    create_attribute=STR_TEMPLATE.format(
915
                        attr_name=op_non_mutable_attribute_name_list[idx],
916
                        op_attribute_type=inner_attribute_type,
917
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
918 919 920
                    ),
                )
        elif (
921 922
            op_non_mutable_attribute_type_list[idx]
            == "paddle::dialect::IntArrayAttribute"
923 924
        ):
            attr_str += INTARRAY_STR_TEMPLATE.format(
925 926 927
                attr_name=op_non_mutable_attribute_name_list[idx],
                op_attribute_type=op_non_mutable_attribute_type_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
928 929
            )

930 931 932 933
        elif (
            op_non_mutable_attribute_type_list[idx]
            == "paddle::dialect::ScalarAttribute"
        ):
934
            attr_str += SCALAR_STR_TEMPLATE.format(
935 936
                attr_name=op_non_mutable_attribute_name_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
937 938 939
            )
        else:
            attr_str += STR_TEMPLATE.format(
940 941 942
                attr_name=op_non_mutable_attribute_name_list[idx],
                op_attribute_type=op_non_mutable_attribute_type_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
943
            )
944
        attr_str += """  argument.AddAttribute("{attr_name}", attr_{attr_name});\n""".format(
945
            attr_name=op_non_mutable_attribute_name_list[idx]
946 947 948 949 950 951 952 953
        )

    return attr_str


def GenBuildOutputs(
    op_input_name_list,
    op_input_type_list,
954 955
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
956 957 958 959
    op_output_name_list,
    op_output_type_list,
    op_output_size_list,
    op_infer_meta_map,
960
    mutable_attr_is_input=False,
961
):
962
    build_output_str = '  VLOG(4) << "Builder construction outputs";\n'
963 964 965 966 967 968 969 970 971
    CREATE_INPUT_METATENSOR_TEMPLATE = """
  VLOG(4) << "Builder construction  dense_{name}";
  phi::DenseTensor dense_{name}(std::make_unique<paddle::experimental::DefaultAllocator>(paddle::platform::CPUPlace()).get(),
                                phi::DenseTensorMeta(TransToPhiDataType({name}.dtype()),
                                                     {name}.dims(),
                                                     {name}.data_layout(),
                                                     {name}.lod(),
                                                     {name}.offset()));
  VLOG(4) << "Builder construction  meta_{name}";
972 973
  phi::MetaTensor meta_{name}(&dense_{name});
"""
974
    CREATE_INPUT_VEC_METATENSOR_TEMPLATE = """  std::vector<phi::DenseTensor> vec_dense_{name};
975
  for (size_t i=0; i < static_cast<size_t>({name}.size()); i++) {{
976 977 978 979 980 981 982 983 984
    vec_dense_{name}.push_back(phi::DenseTensor(std::make_unique<paddle::experimental::DefaultAllocator>(paddle::platform::CPUPlace()).get(),
                                                phi::DenseTensorMeta(TransToPhiDataType({name}[i].dyn_cast<paddle::dialect::DenseTensorType>().dtype()),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().dims(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().data_layout(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().lod(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().offset())));
  }}
  std::vector<phi::MetaTensor> vec_meta_{name};
  for (size_t i=0; i < vec_dense_{name}.size(); i++) {{
985 986
    vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i]));
  }}
987

988 989 990 991 992
  std::vector<const phi::MetaTensor*> meta_{name};
  for (size_t i=0; i < static_cast<size_t>(vec_meta_{name}.size()); i++) {{
    meta_{name}.push_back(&vec_meta_{name}[i]);
  }}
 """
993

994 995 996
    CREATE_INTARRAY_MUTABLE_ATTRIBUE_TEMPLATE = """  std::vector<int64_t> {name} = {name}_.owner()->dyn_cast<paddle::dialect::FullIntArrayOp>().operation()->attributes().at("value").dyn_cast<paddle::dialect::IntArrayAttribute>().data().GetData(); (void){name};\n"""
    CREATE_SCALAR_MUTABLE_ATTRIBUE_TEMPLATE = """  {dtype} {name} = {name}_.owner()->dyn_cast<paddle::dialect::FullOp>().operation()->attributes().at("value").dyn_cast<paddle::dialect::ScalarAttribute>().data().to<{dtype}>(); (void){name};\n"""

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    CREATE_OUTPUT_METATENSOR_TEMPLATE = """  phi::DenseTensor dense_{name};
  phi::MetaTensor meta_{name}(&dense_{name});
"""
    CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE = """  std::vector<phi::DenseTensor> vec_dense_{name}(({output_size}), phi::DenseTensor());
  std::vector<phi::MetaTensor> vec_meta_{name};
  for (size_t i=0; i < static_cast<size_t>({output_size}); i++) {{
    vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i]));
  }}
  std::vector<phi::MetaTensor*> meta_{name};
  for (size_t i=0; i < static_cast<size_t>(vec_meta_{name}.size()); i++) {{
    meta_{name}.push_back(&vec_meta_{name}[i]);
  }}
"""
    # Prepar input type
    for idx in range(len(op_input_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_input_type_list[idx]:
            build_output_str += "  ir::VectorType {name} = {name}_.type().dyn_cast<ir::VectorType>(); (void){name};\n".format(
                name=op_input_name_list[idx]
            )
        # is a Tensor
        else:
            build_output_str += "  paddle::dialect::DenseTensorType {name} = {name}_.type().dyn_cast<paddle::dialect::DenseTensorType>(); (void){name};\n".format(
                name=op_input_name_list[idx]
            )

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    # Prepare mutable attributes
    if mutable_attr_is_input:
        for idx in range(len(op_mutable_attribute_name_list)):
            attr_dtype = op_mutable_attribute_type_list[idx]
            # int_array
            if attr_dtype[0] == "paddle::dialect::IntArrayAttribute":
                build_output_str += (
                    CREATE_INTARRAY_MUTABLE_ATTRIBUE_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx]
                    )
                )
            # scalar
            elif attr_dtype[0] == "paddle::dialect::ScalarAttribute":
                build_output_str += (
                    CREATE_SCALAR_MUTABLE_ATTRIBUE_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        dtype=attr_dtype[1],
                    )
                )
            # string
            elif attr_dtype[0] == "ir::StrAttribute":
                build_output_str += ""
            else:
                assert "mutable attribtue type is not right."
        build_output_str += "\n"

1049
    # Prepare inputs_meta_tensor & attributes for infer meta
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
    infer_meta_args = []
    for idx in range(len(op_infer_meta_map['param'])):
        # is input
        if op_infer_meta_map['param'][idx] in op_input_name_list:
            if (
                "meta_" + op_infer_meta_map['param'][idx]
            ) not in infer_meta_args:
                # is a vector<Tensor>
                if (
                    'ir::VectorType'
                    in op_input_type_list[
                        op_input_name_list.index(
                            op_infer_meta_map['param'][idx]
                        )
                    ]
                ):
                    build_output_str += (
                        CREATE_INPUT_VEC_METATENSOR_TEMPLATE.format(
                            name=op_infer_meta_map['param'][idx]
                        )
                    )
                # is a Tensor
                else:
                    build_output_str += CREATE_INPUT_METATENSOR_TEMPLATE.format(
                        name=op_infer_meta_map['param'][idx]
                    )

            infer_meta_args.append("meta_" + op_infer_meta_map['param'][idx])
        # is attribute
        else:
            infer_meta_args.append(op_infer_meta_map['param'][idx])

1082
    # Prepare outputs_meta_tensor for infer meta
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    for idx in range(len(op_output_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_output_type_list[idx]:
            build_output_str += CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE.format(
                name=op_output_name_list[idx],
                output_size=op_output_size_list[idx],
            )
            infer_meta_args.append(f"meta_{op_output_name_list[idx]}")
        # is a Tensor
        else:
            build_output_str += CREATE_OUTPUT_METATENSOR_TEMPLATE.format(
                name=op_output_name_list[idx]
            )
            infer_meta_args.append(f"&meta_{op_output_name_list[idx]}")

    # Execute infer meta function
    CREATE_INFER_META_FUNC_TEMPLATE = """
  phi::{func}({args});
"""
    build_output_str += CREATE_INFER_META_FUNC_TEMPLATE.format(
        func=op_infer_meta_map['func'], args=", ".join(infer_meta_args)
    )

    # use dense_{name} or vec_dense_{name} to create Outputs type
    build_output_str += "\n  std::vector<ir::Type> argument_outputs;"

    CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE = """
  ir::Type {name}_dense_tensor_type = paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(dense_{name}.dtype()), dense_{name}.dims(), dense_{name}.layout(), dense_{name}.lod(), dense_{name}.offset());
  argument_outputs.push_back({name}_dense_tensor_type);
"""
    CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE = """
  std::vector<ir::Type> {name}_types;
  for (size_t i=0; i < static_cast<size_t>({output_size}); i++) {{
    {name}_types.push_back(paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(vec_dense_{name}[i].dtype()), vec_dense_{name}[i].dims(), vec_dense_{name}[i].layout(), vec_dense_{name}[i].lod(), vec_dense_{name}[i].offset()));
  }}
  ir::Type {name}_vector_type = ir::VectorType::get(ir::IrContext::Instance(), {name}_types);
  argument_outputs.push_back({name}_vector_type);
"""
    for idx in range(len(op_output_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_output_type_list[idx]:
            build_output_str += CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE.format(
                name=op_output_name_list[idx],
                output_size=op_output_size_list[idx],
            )
        # is a Tensor
        else:
            build_output_str += CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE.format(
                name=op_output_name_list[idx]
            )

1134
    build_output_str += "  argument.AddTypes(argument_outputs.begin(), argument_outputs.end());\n"
1135 1136 1137 1138

    return build_output_str


1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
def GenBuild(
    op_class_name,
    op_input_name_list,
    op_input_type_list,
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_attribute_default_value_list,
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
    op_non_mutable_attribute_name_list,
    op_non_mutable_attribute_type_list,
    op_non_mutable_attribute_build_arg_type_list,
    op_non_mutable_attribute_default_value_list,
    op_output_name_list,
    op_output_type_list,
    op_output_size_list,
    op_infer_meta_map,
    muta_attr_is_input=False,
):
    build_args_for_declare = ""
    build_func = ""

    build_args_for_declare = GenBuildInputArgsStr(
        op_input_name_list,
        op_attribute_name_list,
        op_attribute_build_arg_type_list,
        op_attribute_default_value_list,
        op_mutable_attribute_name_list,
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_build_arg_type_list,
        op_non_mutable_attribute_default_value_list,
        True,
        muta_attr_is_input,
    )

    build_args_for_define = GenBuildInputArgsStr(
        op_input_name_list,
        op_attribute_name_list,
        op_attribute_build_arg_type_list,
        op_attribute_default_value_list,
        op_mutable_attribute_name_list,
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_build_arg_type_list,
        op_non_mutable_attribute_default_value_list,
        False,
        muta_attr_is_input,
    )
    inset_full_for_mutable_attributes_str = ""
    if not muta_attr_is_input:
        inset_full_for_mutable_attributes_str = (
            GenBuildInserFullForMutableAttribute(
                op_attribute_name_list,
                op_attribute_build_arg_type_list,
                op_mutable_attribute_name_list,
                op_mutable_attribute_type_list,
            )
        )

    build_inputs_str = GenBuildInputs(
        op_input_name_list, op_mutable_attribute_name_list
    )
    build_attributes_str = GenBuildAttributes(
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_type_list,
    )
    build_outputs_str = GenBuildOutputs(
        op_input_name_list,
        op_input_type_list,
        op_mutable_attribute_name_list,
        op_mutable_attribute_type_list,
        op_output_name_list,
        op_output_type_list,
        op_output_size_list,
        op_infer_meta_map,
1213
        muta_attr_is_input,
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    )

    build_func = OP_BUILD_TEMPLATE.format(
        op_name=op_class_name,
        build_args=build_args_for_define,
        build_mutable_attributes=inset_full_for_mutable_attributes_str,
        build_inputs=build_inputs_str,
        build_attributes=build_attributes_str,
        build_outputs=build_outputs_str,
    )

    return (build_args_for_declare, build_func)


1228 1229
def OpGenerator(
    op_yaml_files,
1230
    op_compat_yaml_file,
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
1243 1244
    op_compat_parser = OpCompatParser(op_compat_yaml_file)

1245 1246 1247 1248 1249 1250 1251
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
    op_info_items = []
    for op in op_yaml_items:
1252 1253 1254
        op_info_items.append(
            OpInfoParser(op, op_compat_parser.get_compat(op['name']))
        )
1255 1256 1257 1258 1259 1260

    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
    for op_info in op_info_items:
1261
        # get op inputs info
1262 1263 1264
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
1265
        op_input_no_need_buffer_list = op_info.input_no_need_buffer_list
1266
        # get op outputs info
1267 1268
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
1269
        op_output_size_list = op_info.output_size_list
1270
        op_output_optional_list = op_info.output_optional_list
1271
        op_output_intermediate_list = op_info.output_intermediate_list
1272 1273 1274 1275
        # get op mutable attribute
        op_mutable_attribute_name_list = op_info.mutable_attribute_name_list
        op_mutable_attribute_type_list = op_info.mutable_attribute_type_list
        # get op attribute
1276 1277
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
1278
        op_attribute_data_type_list = op_info.attribute_data_type_list
1279 1280
        op_attribute_build_arg_type_list = op_info.attribute_build_arg_type_list
        op_attribute_default_value_list = op_info.attribute_default_value_list
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
        op_non_mutable_attribute_name_list = (
            op_info.non_mutable_attribute_name_list
        )
        op_non_mutable_attribute_type_list = (
            op_info.non_mutable_attribute_type_list
        )
        op_non_mutable_attribute_data_type_list = (
            op_info.non_mutable_attribute_data_type_list
        )
        op_non_mutable_attribute_build_arg_type_list = (
            op_info.non_mutable_attribute_build_arg_type_list
        )
        op_non_mutable_attribute_default_value_list = (
            op_info.non_mutable_attribute_default_value_list
        )

1297
        # others
1298 1299
        op_infer_meta_map = op_info.infer_meta_map
        op_kernel_map = op_info.kernel_map
1300 1301
        op_inplace_map = op_info.inplace_map
        op_view_map = op_info.view_map
1302
        op_interfaces = ["OpYamlInfoInterface"]
1303 1304
        op_traits = []

H
hong 已提交
1305 1306 1307 1308 1309 1310 1311
        exclusive_interface_str = ""
        if op_info.infer_shape_func:
            op_interfaces += ["InferShapeInterface"]
            exclusive_interface_str += (
                "  static void InferShape( phi::InferMetaContext *infer_meta );"
            )

1312 1313 1314 1315 1316
        # If op has inplace info, we will generate inplace op and non-inplace op.
        for op_name in op_info.op_phi_name:
            op_class_name = to_pascal_case(op_name) + "Op"
            op_dialect_name = dialect_name + "." + op_name

1317 1318 1319
            # =================================== #
            #    gen interface/trait list str     #
            # =================================== #
1320 1321 1322 1323 1324 1325 1326
            op_interfaces_str = ""
            if len(op_interfaces) > 0:
                op_interfaces_str = "," + ",".join(op_interfaces)
            op_traits_str = ""
            if len(op_traits) > 0:
                op_traits_str = "," + ",".join(op_traits)

1327 1328 1329
            # =================================== #
            #  gen get input/output methods str   #
            # =================================== #
1330 1331 1332 1333 1334 1335
            op_get_inputs_outputs_str = ""
            for idx in range(len(op_input_name_list)):
                op_get_inputs_outputs_str += OP_GET_INPUT_TEMPLATE.format(
                    input_name=op_input_name_list[idx],
                    input_index=idx,
                )
1336 1337 1338 1339 1340
            for idx in range(len(op_mutable_attribute_name_list)):
                op_get_inputs_outputs_str += OP_GET_INPUT_TEMPLATE.format(
                    input_name=op_mutable_attribute_name_list[idx],
                    input_index=idx + len(op_input_name_list),
                )
1341 1342 1343 1344 1345
            for idx in range(len(op_output_name_list)):
                op_get_inputs_outputs_str += OP_GET_OUTPUT_TEMPLATE.format(
                    output_name=op_output_name_list[idx],
                    output_index=idx,
                )
1346

1347 1348 1349 1350 1351 1352 1353 1354
            # =================================== #
            #         gen Build methods str       #
            # =================================== #
            build_args_with_muta_attr_not_input_for_declare = ""
            build_func_with_muta_attr_not_input = ""
            build_mutable_attr_is_input = ""
            build_func_with_muta_attr_is_input = ""

1355
            if op_infer_meta_map is not None:
1356 1357 1358 1359 1360
                (
                    build_args_with_muta_attr_not_input_for_declare,
                    build_func_with_muta_attr_not_input,
                ) = GenBuild(
                    op_class_name,
1361
                    op_input_name_list,
1362 1363 1364 1365
                    op_input_type_list,
                    op_attribute_name_list,
                    op_attribute_build_arg_type_list,
                    op_attribute_default_value_list,
1366
                    op_mutable_attribute_name_list,
1367
                    op_mutable_attribute_type_list,
1368
                    op_non_mutable_attribute_name_list,
1369
                    op_non_mutable_attribute_type_list,
1370 1371
                    op_non_mutable_attribute_build_arg_type_list,
                    op_non_mutable_attribute_default_value_list,
1372 1373 1374 1375
                    op_output_name_list,
                    op_output_type_list,
                    op_output_size_list,
                    op_infer_meta_map,
1376
                    muta_attr_is_input=False,
1377
                )
1378
                if len(op_mutable_attribute_name_list) > 0:
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
                    (
                        build_args_with_muta_attr_is_input_for_declare,
                        build_func_with_muta_attr_is_input,
                    ) = GenBuild(
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=True,
                    )

                    build_mutable_attr_is_input = "static void Build({build_args});".format(
                        build_args=build_args_with_muta_attr_is_input_for_declare
                    )
1405

1406
            # gen op_declare_str/op_defined_str
1407
            if len(op_non_mutable_attribute_name_list) == 0:
1408 1409 1410 1411 1412 1413 1414
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_0_attribute_declare_str,
                    attribute_num=0,
1415 1416
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
1417
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
1418
                    exclusive_interface=exclusive_interface_str,
1419 1420 1421 1422 1423 1424 1425 1426 1427
                )
                op_defined_str = ""
            else:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_n_attribute_declare_str.format(
1428
                        attribute_num=len(op_non_mutable_attribute_name_list)
1429
                    ),
1430
                    attribute_num=len(op_non_mutable_attribute_name_list),
1431 1432
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
1433
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
1434
                    exclusive_interface=exclusive_interface_str,
1435 1436
                )
                attribute_names_str = (
1437
                    '"' + '", "'.join(op_non_mutable_attribute_name_list) + '"'
1438 1439 1440
                )
                op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                    op_name=op_class_name,
1441
                    attribute_num=len(op_non_mutable_attribute_name_list),
1442 1443
                    attribute_names=attribute_names_str,
                )
1444

1445 1446 1447
            # =================================== #
            #         gen GetOpInfo func str      #
            # =================================== #
1448
            # generate get op info funciton: inputs
1449
            input_info_list = []
1450 1451 1452 1453 1454 1455 1456 1457
            for idx in range(len(op_input_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_input_name_list[idx],
                        typename=op_input_type_list[idx],
                        optional=op_input_optional_list[idx],
                        no_need_buffer=op_input_no_need_buffer_list[idx],
                        is_mutable_attribute='false',
1458
                    )
1459 1460 1461 1462 1463 1464 1465 1466 1467
                )
            for idx in range(len(op_mutable_attribute_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        typename=op_mutable_attribute_type_list[idx][0],
                        optional='false',
                        no_need_buffer='false',
                        is_mutable_attribute='true',
1468
                    )
1469 1470 1471 1472 1473
                )
            if len(input_info_list) > 0:
                inputs_info_str = ", ".join(input_info_list)
            else:
                inputs_info_str = ""
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
            # generate get op info funciton: outputs
            outputs_info_str = ""
            if len(op_output_name_list) > 0:
                output_info_list = []
                for idx in range(len(op_output_name_list)):
                    output_info_list.append(
                        CONSTRUCT_OUTPUT_INFO_TEMPLATE.format(
                            name=op_output_name_list[idx],
                            typename=op_output_type_list[idx],
                            optional=op_output_optional_list[idx],
                            intermediate=op_output_intermediate_list[idx],
                        )
1486
                    )
1487 1488 1489
                outputs_info_str = ", ".join(output_info_list)
            # generate get op info funciton: attributes
            attribute_info_str = ""
1490
            if len(op_non_mutable_attribute_name_list) > 0:
1491
                attribute_info_list = []
1492
                for idx in range(len(op_non_mutable_attribute_name_list)):
1493 1494
                    attribute_info_list.append(
                        CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format(
1495 1496 1497 1498 1499
                            name=op_non_mutable_attribute_name_list[idx],
                            typename=op_non_mutable_attribute_type_list[idx],
                            data_type=op_non_mutable_attribute_data_type_list[
                                idx
                            ],
1500
                        )
1501
                    )
1502
                attribute_info_str = ", ".join(attribute_info_list)
1503 1504 1505 1506 1507 1508
            # generate runtiem info
            infer_meta_func_str = ""
            infer_meta_param_str = ""
            if op_infer_meta_map is not None:
                infer_meta_func_str = op_infer_meta_map['func']
                infer_meta_param_str = '", "'.join(op_infer_meta_map['param'])
1509

1510 1511
            kernel_func_str = ""
            kernel_param_str = ""
1512
            kernel_key_dtype = ""
1513 1514 1515
            if op_kernel_map is not None:
                kernel_func_str = '", "'.join(op_kernel_map['func'])
                kernel_param_str = '", "'.join(op_kernel_map['param'])
1516 1517 1518 1519
                if 'data_type' in op_kernel_map and op_kernel_map['data_type']:
                    kernel_key_dtype = '", "'.join(
                        op_kernel_map['data_type']['candidates']
                    )
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
            inplace_str = ""
            view_str = ""
            if op_name[-1] == "_":
                if op_inplace_map is not None:
                    for key, value in op_inplace_map.items():
                        inplace_str += '{"' + key + '", "' + value + '"},'
                    inplace_str = inplace_str[:-1]
                if op_view_map is not None:
                    for key, value in op_view_map.items():
                        view_str += '{"' + key + '", "' + value + '"},'
                    view_str = view_str[:-1]

1533 1534 1535 1536 1537
            op_info_func_str = OP_INFO_TEMPLATE.format(
                op_name=op_class_name,
                inputs=inputs_info_str,
                attributes=attribute_info_str,
                outputs=outputs_info_str,
1538 1539 1540 1541
                infer_meta_func=infer_meta_func_str,
                infer_meta_param=infer_meta_param_str,
                kernel_func=kernel_func_str,
                kernel_param=kernel_param_str,
1542
                kernel_key_dtype=kernel_key_dtype,
1543 1544
                inplace=inplace_str,
                view=view_str,
1545
            )
1546

1547 1548 1549
            # =================================== #
            #          gen Verify func str        #
            # =================================== #
1550
            # generate op verify function: inputs_type_check_str
1551 1552 1553
            if (
                len(op_input_type_list) + len(op_mutable_attribute_name_list)
            ) == 0:
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
                inputs_type_check_str = (
                    "// Inputs num is 0, not need to check inputs type."
                )
            else:
                inputs_type_check_str = ""
            for idx in range(len(op_input_type_list)):
                input_type = op_input_type_list[idx]
                is_optional = op_input_optional_list[idx]
                is_vector = False
                if input_type.startswith("ir::VectorType<"):
                    is_vector = True
                    input_type = input_type[15:-1]
                check_str = ""
                if is_optional == "true":
                    if is_vector:
                        check_str = (
                            INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format(
                                index=idx, standard=input_type
                            )
                        )
                    else:
                        check_str = INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                else:
                    if is_vector:
                        check_str = INPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                    else:
                        check_str = INPUT_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                inputs_type_check_str += check_str

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
            for idx in range(len(op_mutable_attribute_name_list)):
                mutable_attribute_type = op_mutable_attribute_type_list[idx][0]
                check_str = ""
                if mutable_attribute_type == "paddle::dialect::ScalarAttribute":
                    check_str = INPUT_TYPE_CHECK_TEMPLATE.format(
                        index=idx + len(op_input_type_list),
                        standard="paddle::dialect::DenseTensorType",
                    )
                else:
                    check_str = INPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                        index=idx + len(op_input_type_list),
                        standard="paddle::dialect::DenseTensorType",
                    )
                inputs_type_check_str += check_str
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
            # generate op verify function: outputs_type_check_str
            if len(op_output_type_list) == 0:
                outputs_type_check_str = (
                    "// Outputs num is 0, not need to check outputs type."
                )
            else:
                outputs_type_check_str = ""
            for idx in range(len(op_output_type_list)):
                output_type = op_output_type_list[idx]
                is_optional = op_output_optional_list[idx]
                is_vector = False
                if output_type.startswith("ir::VectorType<"):
                    is_vector = True
                    output_type = output_type[15:-1]
                check_str = ""
                if is_optional == "true":
                    if is_vector:
                        check_str = (
                            OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format(
                                index=idx, standard=output_type
                            )
                        )
                    else:
                        check_str = OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format(
1627 1628 1629
                            index=idx, standard=output_type
                        )
                else:
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
                    if is_vector:
                        check_str = OUTPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=output_type
                        )
                    else:
                        check_str = OUTPUT_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=output_type
                        )
                outputs_type_check_str += check_str
            # generate op verify function: attributes_check_str
1640
            if len(op_non_mutable_attribute_name_list) == 0:
1641 1642 1643
                attributes_check_str = (
                    "// Attributes num is 0, not need to check attributes type."
                )
1644
            else:
1645
                attributes_check_str = ""
1646 1647 1648
            for idx in range(len(op_non_mutable_attribute_name_list)):
                attribute_name = op_non_mutable_attribute_name_list[idx]
                attribute_type = op_non_mutable_attribute_type_list[idx]
1649 1650 1651 1652 1653 1654 1655
                if attribute_type.startswith("ir::ArrayAttribute<"):
                    attribute_type = attribute_type[19:-1]
                    attributes_check_str += (
                        ATTRIBUTE_VECTOR_CHECK_TEMPLATE.format(
                            attribute_name=attribute_name,
                            standard=attribute_type,
                        )
1656 1657
                    )
                else:
1658 1659
                    attributes_check_str += ATTRIBUTE_CHECK_TEMPLATE.format(
                        attribute_name=attribute_name, standard=attribute_type
1660
                    )
1661
            # generate op verify function
1662 1663 1664 1665 1666 1667 1668
            if "GradOp" in op_class_name or "Grad_Op" in op_class_name:
                op_verify_str = GRAD_OP_VERIFY_TEMPLATE.format(
                    op_name=op_class_name,
                )
            else:
                op_verify_str = OP_VERIFY_TEMPLATE.format(
                    op_name=op_class_name,
1669 1670
                    inputs_size=len(op_input_type_list)
                    + len(op_mutable_attribute_type_list),
1671 1672 1673 1674 1675
                    outputs_size=len(op_output_type_list),
                    inputs_type_check=inputs_type_check_str,
                    outputs_type_check=outputs_type_check_str,
                    attributes_check=attributes_check_str,
                )
1676

H
hong 已提交
1677 1678 1679 1680 1681 1682 1683
            op_infer_shape_str = ""
            if op_info.infer_shape_func:
                op_infer_shape_str = OP_INFER_SHAPE_TEMPLATE.format(
                    op_name=op_class_name,
                    infer_meta_func=op_info.infer_shape_func,
                )

1684 1685 1686 1687
            ops_name_list.append(op_class_name)
            ops_declare_list.append(op_declare_str)
            ops_defined_list.append(op_defined_str)
            ops_defined_list.append(op_info_func_str)
1688 1689 1690
            ops_defined_list.append(build_func_with_muta_attr_not_input)
            if len(op_mutable_attribute_name_list) > 0:
                ops_defined_list.append(build_func_with_muta_attr_is_input)
1691
            ops_defined_list.append(op_verify_str)
H
hong 已提交
1692
            ops_defined_list.append(op_infer_shape_str)
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
        op_declare=op_list_str, input=head_file_str
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
    source_file_str = CC_FILE_TEMPLATE.format(
1721
        h_file=op_def_h_file[:-4], input=source_file_str
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
    )  # Add head

    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
    with open(op_def_h_file, 'a') as f:
        f.write(head_file_str)
    with open(op_def_cc_file, 'a') as f:
        f.write(source_file_str)


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file

    # auto code generate
    OpGenerator(
        op_yaml_files,
1765
        op_compat_yaml_file,
1766 1767 1768 1769 1770
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
    )