test_scale_op.py 7.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20
import paddle
21
import paddle.fluid as fluid
22 23
import paddle.fluid.core as core
from paddle.fluid.op import Operator
24
from paddle.static import Program, program_guard
Y
Yu Yang 已提交
25 26


27
class TestScaleOp(OpTest):
Y
Yu Yang 已提交
28
    def setUp(self):
Q
qijun 已提交
29
        self.op_type = "scale"
30
        self.python_api = paddle.scale
31
        self.dtype = np.float64
C
chengduo 已提交
32 33
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Y
Yu Yang 已提交
34
        self.attrs = {'scale': -2.3}
C
chengduo 已提交
35 36 37 38 39 40
        self.outputs = {
            'Out': self.inputs['X'] * self.dtype(self.attrs['scale'])
        }

    def init_dtype_type(self):
        pass
Y
Yu Yang 已提交
41

Q
qijun 已提交
42
    def test_check_output(self):
43
        self.check_output(check_eager=True)
Y
Yu Yang 已提交
44

Q
qijun 已提交
45
    def test_check_grad(self):
46
        self.check_grad(['X'], 'Out', check_eager=True)
Y
Yu Yang 已提交
47 48


49 50 51
class TestScaleOpScaleVariable(OpTest):
    def setUp(self):
        self.op_type = "scale"
52
        self.python_api = paddle.scale
53
        self.dtype = np.float64
54 55 56 57
        self.init_dtype_type()
        self.scale = -2.3
        self.inputs = {
            'X': np.random.random((10, 10)).astype(self.dtype),
58
            'ScaleTensor': np.array([self.scale]).astype('float64')
59 60 61 62 63 64 65 66
        }
        self.attrs = {}
        self.outputs = {'Out': self.inputs['X'] * self.dtype(self.scale)}

    def init_dtype_type(self):
        pass

    def test_check_output(self):
67
        self.check_output(check_eager=True)
68 69

    def test_check_grad(self):
70
        self.check_grad(['X'], 'Out', check_eager=True)
71 72


73
class TestScaleOpSelectedRows(unittest.TestCase):
C
chengduo 已提交
74 75 76
    def init_dtype_type(self):
        pass

77 78 79
    def check_with_place(self, place, in_name, out_name):
        scope = core.Scope()

80
        self.dtype = np.float64
C
chengduo 已提交
81 82
        self.init_dtype_type()

83 84 85 86 87 88 89 90 91 92
        # create and initialize Grad Variable
        in_height = 10
        in_rows = [0, 4, 7]
        in_row_numel = 12
        scale = 2.0

        in_selected_rows = scope.var(in_name).get_selected_rows()
        in_selected_rows.set_height(in_height)
        in_selected_rows.set_rows(in_rows)
        in_array = np.random.random(
C
chengduo 已提交
93
            (len(in_rows), in_row_numel)).astype(self.dtype)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

        in_tensor = in_selected_rows.get_tensor()
        in_tensor.set(in_array, place)

        # create and initialize Param Variable
        out_selected_rows = scope.var(out_name).get_selected_rows()
        out_tensor = out_selected_rows.get_tensor()
        out_tensor._set_dims(in_tensor._get_dims())

        # create and run sgd operator
        scale_op = Operator("scale", X=in_name, Out=out_name, scale=scale)
        scale_op.run(scope, place)

        # get and compare result
        out_height = out_selected_rows.height()
        out_rows = out_selected_rows.rows()
        result_array = np.array(out_tensor)

        assert (in_array * scale == result_array).all()
        assert in_height == out_height
114
        assert in_rows == out_rows
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    def test_scale_selected_rows(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'in')


131 132 133 134 135 136 137 138
class TestScaleRaiseError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.scale([10])

        self.assertRaises(TypeError, test_type)


C
chengduo 已提交
139 140 141 142 143 144 145 146 147 148
# Add FP16 test
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScaleFp16Op(TestScaleOp):
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
149
            self.check_output_with_place(place, atol=0.002, check_eager=True)
C
chengduo 已提交
150 151 152 153 154

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
155
                place, ["X"], "Out", max_relative_error=0.05, check_eager=True)
C
chengduo 已提交
156 157


158 159 160
class TestScaleBF16Op(OpTest):
    def setUp(self):
        self.op_type = "scale"
161
        self.python_api = paddle.scale
162 163 164 165 166 167 168 169
        self.dtype = np.uint16
        self.attrs = {'scale': -2.3}
        x = np.random.random((10, 10)).astype(np.float32)
        out = x * np.float32(self.attrs['scale'])
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
170
        self.check_output(check_eager=True)
171 172

    def test_check_grad(self):
173
        self.check_grad(['X'], 'Out', numeric_grad_delta=0.8, check_eager=True)
174 175


C
chengduo 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScaleFp16OpSelectedRows(TestScaleOpSelectedRows):
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_scale_selected_rows(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'in')


193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
class TestScaleApiStatic(unittest.TestCase):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.enable_static()
        input = np.random.random([2, 25]).astype("float32")
        main_prog = Program()
        with program_guard(main_prog, Program()):
            x = paddle.static.data(name="x", shape=[2, 25], dtype="float32")
            out = self._executed_api(x, scale=2.0, bias=3.0)

        exe = paddle.static.Executor(place=paddle.CPUPlace())
        out = exe.run(main_prog, feed={"x": input}, fetch_list=[out])
        self.assertEqual(np.array_equal(out[0], input * 2.0 + 3.0), True)


class TestScaleInplaceApiStatic(TestScaleApiStatic):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


class TestScaleApiDygraph(unittest.TestCase):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.disable_static()
        input = np.random.random([2, 25]).astype("float32")
        x = paddle.to_tensor(input)
        out = self._executed_api(x, scale=2.0, bias=3.0)
        self.assertEqual(np.array_equal(out.numpy(), input * 2.0 + 3.0), True)
        paddle.enable_static()


class TestScaleInplaceApiDygraph(TestScaleApiDygraph):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


Q
qijun 已提交
233
if __name__ == "__main__":
Y
Yu Yang 已提交
234
    unittest.main()