the_one_ps.py 50.9 KB
Newer Older
Z
ziyoujiyi 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Z
ziyoujiyi 已提交
2
#
Z
ziyoujiyi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Z
ziyoujiyi 已提交
6
#
Z
ziyoujiyi 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
Z
ziyoujiyi 已提交
8
#
Z
ziyoujiyi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
ziyoujiyi 已提交
14 15 16 17

import warnings

import os
Z
ziyoujiyi 已提交
18
from paddle.distributed.fleet.proto import ps_pb2
Z
ziyoujiyi 已提交
19 20 21
import paddle.fluid as fluid
import paddle.distributed.fleet as fleet
from paddle.fluid import core
Z
ziyoujiyi 已提交
22
from paddle.distributed.ps.utils.public import *
Z
ziyoujiyi 已提交
23 24 25 26 27
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
W
wangguanqun 已提交
28 29
from paddle.distributed.fleet.runtime.runtime_base import RuntimeBase
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
Z
ziyoujiyi 已提交
30 31 32
from paddle.fluid.communicator import Communicator, HeterClient
from google.protobuf import text_format

Z
ziyoujiyi 已提交
33 34 35 36
__all__ = [
    'Table', 'SparseTable', 'GeoSparseTable', 'BarrierTable', 'TensorTable',
    'DenseTable'
]
Z
ziyoujiyi 已提交
37 38


W
wangguanqun 已提交
39 40 41 42
def get_program_by_id(context, program_id):
    programs = context["origin_main_programs"]
    for i, program in enumerate(programs):
        if id(program) == program_id:
43 44
            return program, context["origin_startup_programs"][i], i
    return None, None, None
W
wangguanqun 已提交
45 46 47


def parse_table_class(varname, program_id, context):
48
    main_program, startup_program, idx = get_program_by_id(context, program_id)
W
wangguanqun 已提交
49
    for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
50 51 52 53 54 55 56 57 58 59 60 61
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
                return "MemorySparseTable"


Z
ziyoujiyi 已提交
62
def check_embedding_dim(accessor_proto, varname, program_id, context):
63
    main_program, startup_program, idx = get_program_by_id(context, program_id)
Z
ziyoujiyi 已提交
64
    embedding_dim = 0
W
wangguanqun 已提交
65
    for var in main_program.list_vars():
Z
ziyoujiyi 已提交
66 67
        if var.name == varname:
            embedding_dim = var.shape[1]
Z
ziyoujiyi 已提交
68 69
            print('new var: {}, {}, {}'.format(var, embedding_dim,
                                               accessor_proto.fea_dim))
Z
ziyoujiyi 已提交
70
            break
Z
ziyoujiyi 已提交
71
    fea_dim = accessor_proto.fea_dim
Z
ziyoujiyi 已提交
72 73 74 75
    if fea_dim != embedding_dim + 2:
        raise ValueError(
            "The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}".
            format(embedding_dim + 2, fea_dim))
Z
ziyoujiyi 已提交
76
    embedx_dim = accessor_proto.embedx_dim
Z
ziyoujiyi 已提交
77 78 79 80 81 82
    if embedx_dim != embedding_dim - 1:
        raise ValueError(
            "The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}".
            format(embedding_dim - 1, embedx_dim))


Z
ziyoujiyi 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96
class Service:
    def __init__(self):
        pass

    def _set(self, service_proto):
        service_proto.server_class = "BrpcPsServer"
        service_proto.client_class = "BrpcPsClient"
        service_proto.service_class = "BrpcPsService"
        service_proto.start_server_port = 0
        service_proto.server_thread_num = 12


class GpuService(Service):
    def __init__(self):
97
        super(GpuService, self).__init__()
Z
ziyoujiyi 已提交
98 99 100 101 102 103

    def _set(self, service_proto):
        service_proto.server_class = 'PsLocalServer'
        service_proto.client_class = 'PsLocalClient'


Z
ziyoujiyi 已提交
104 105 106 107
class Accessor:
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
Z
ziyoujiyi 已提交
108 109
        self.feature_dim = 0
        self.embedding_dim = 0
Z
ziyoujiyi 已提交
110

Z
ziyoujiyi 已提交
111 112
    # TableAccessorParameter accessor
    def _set(self, accessor_proto, varname, program_id, context):
113 114
        main_program, startup_program, idx = get_program_by_id(context,
                                                               program_id)
Z
ziyoujiyi 已提交
115 116 117 118 119
        embedding_dim = 0
        for var in main_program.list_vars():
            if var.name == varname:
                embedding_dim = var.shape[1]
                break
Z
ziyoujiyi 已提交
120

Z
ziyoujiyi 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        if not accessor_proto.HasField("accessor_class"):
            accessor_proto.accessor_class = "CtrCommonAccessor"
        if not accessor_proto.HasField("fea_dim"):
            accessor_proto.fea_dim = embedding_dim + 2
        if not accessor_proto.HasField("embedx_dim"):
            accessor_proto.embedx_dim = embedding_dim - 1
        if not accessor_proto.HasField("embedx_threshold"):
            accessor_proto.embedx_threshold = 0

        ctr_accessor_param = accessor_proto.ctr_accessor_param
        if not ctr_accessor_param.HasField("nonclk_coeff"):
            ctr_accessor_param.nonclk_coeff = 0.1
        if not ctr_accessor_param.HasField("click_coeff"):
            ctr_accessor_param.click_coeff = 1.0
        if not ctr_accessor_param.HasField("base_threshold"):
            ctr_accessor_param.base_threshold = 0
        if not ctr_accessor_param.HasField("delta_threshold"):
            ctr_accessor_param.delta_threshold = 0
        if not ctr_accessor_param.HasField("delta_keep_days"):
            ctr_accessor_param.delta_keep_days = 16
        if not ctr_accessor_param.HasField("show_click_decay_rate"):
            ctr_accessor_param.show_click_decay_rate = 1
        if not ctr_accessor_param.HasField("delete_threshold"):
            ctr_accessor_param.delete_threshold = 0
        if not ctr_accessor_param.HasField("delete_after_unseen_days"):
            ctr_accessor_param.delete_after_unseen_days = 30
        if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
            ctr_accessor_param.ssd_unseenday_threshold = 1

        for sgd_param in [
                accessor_proto.embed_sgd_param, accessor_proto.embedx_sgd_param
        ]:
            if not sgd_param.HasField("name"):
                sgd_param.name = "SparseAdaGradSGDRule"
            if sgd_param.name == "SparseAdaGradSGDRule" or sgd_param.name == "StdAdaGradSGDRule":
                if not sgd_param.adagrad.HasField("learning_rate"):
                    sgd_param.adagrad.learning_rate = 0.05
                if not sgd_param.adagrad.HasField("initial_g2sum"):
                    sgd_param.adagrad.initial_g2sum = 3.0
                if not sgd_param.adagrad.HasField("initial_range"):
                    sgd_param.adagrad.initial_range = 0.0001
                if len(sgd_param.adagrad.weight_bounds) == 0:
                    sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
            if sgd_param.name == "SparseNaiveSGDRule":
                if not sgd_param.naive.HasField("learning_rate"):
                    sgd_param.naive.learning_rate = 0.05
                if not sgd_param.naive.HasField("initial_range"):
                    sgd_param.naive.initial_range = 0.0001
                if len(sgd_param.naive.weight_bounds) == 0:
                    sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
            if sgd_param.name == "SparseAdamSGDRule":
                if not sgd_param.adam.HasField("learning_rate"):
                    sgd_param.adam.learning_rate = 0.001
                if not sgd_param.adam.HasField("initial_range"):
                    sgd_param.adam.initial_range = 0.0001
                if not sgd_param.adam.HasField("beta1_decay_rate"):
                    sgd_param.adam.beta1_decay_rate = 0.9
                if not sgd_param.adam.HasField("beta2_decay_rate"):
                    sgd_param.adam.beta2_decay_rate = 0.999
                if not sgd_param.adam.HasField("ada_epsilon"):
                    sgd_param.adam.ada_epsilon = 1e-08
                if len(sgd_param.adam.weight_bounds) == 0:
                    sgd_param.adam.weight_bounds.extend([-10.0, 10.0])


class CommonAccessor(Accessor):
Z
ziyoujiyi 已提交
187
    def __init__(self):
Z
ziyoujiyi 已提交
188 189 190
        super(CommonAccessor, self).__init__()
        self.table_name = ''
        self.entry = 'none'
Z
ziyoujiyi 已提交
191 192 193 194
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
Z
ziyoujiyi 已提交
195
        self.sync = False
Z
ziyoujiyi 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
        opt_input_map["adam_d2sum"] = [
            ("Param", None), ("D2Sum", None), ("G2Sum", None), ("Moment", None),
            ("MomentDecayRate", 1), ("AdaDecayRate", 1), ("AdaEpsilon", 1),
            ("LearningRate", 1)
        ]
        opt_input_map["sum"] = [("Param", None)]
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
W
wangguanqun 已提交
216
        opt_input_map["summary"] = [("Param", None), ("SummaryDecayRate", 1)]
Z
ziyoujiyi 已提交
217 218 219 220 221 222 223 224 225

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
        opt_attr_map["naive_adagrad"] = []
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]
        opt_attr_map["adam_d2sum"] = [("beta1", "f"), ("beta2", "f"),
                                      ("epsilon", "f")]
W
wangguanqun 已提交
226
        opt_attr_map["summary"] = []
Z
ziyoujiyi 已提交
227 228 229 230 231 232 233 234 235 236 237

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

W
wangguanqun 已提交
238
    def parse_entry(self, varname, program_id, context):
239 240
        main_program, startup_program, idx = get_program_by_id(context,
                                                               program_id)
W
wangguanqun 已提交
241
        for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

    def get_shard(self, total_dim, shard_num, pserver_id):
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
W
wangguanqun 已提交
271
        print("get_initializer_attr param name:", value_name)
Z
ziyoujiyi 已提交
272 273 274 275
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
W
wangguanqun 已提交
276
                print("get_initializer_attr op type:", op.type)
Z
ziyoujiyi 已提交
277
                for attr in self.opt_init_map[op.type]:
W
wangguanqun 已提交
278
                    print("get_initializer_attr opt_init_map attr:", attr)
Z
ziyoujiyi 已提交
279
                    init_attr.append(str(op.attr(attr)))
W
wangguanqun 已提交
280
                    print("get_initializer_attr op attr:", str(op.attr(attr)))
Z
ziyoujiyi 已提交
281 282 283 284
                attr_str = l_in.join(init_attr)
                break
        return attr_str

W
wangguanqun 已提交
285 286 287 288 289 290 291 292 293
    def parse_by_optimizer(self, ctx, context):
        grad_name = ctx.origin_varnames()[0]
        is_sparse = ctx.is_sparse()
        size = ctx.sections()[0]
        single_dim = ctx.sections()[1] if ctx.is_sparse() else 1
        adam_d2sum = context["user_defined_strategy"].adam_d2sum
        print("parse_by_optimizer table_id:{} is_datanorm:{}".format(
            ctx.table_id(), ctx.is_datanorm_table()))

294 295
        main_program, startup_program, idx = get_program_by_id(context,
                                                               ctx.program_id())
Z
ziyoujiyi 已提交
296 297 298
        pserver_id = get_role_id(context['role_maker'])
        pserver_num = len(get_ps_endpoints(context['role_maker']))
        optimizer_ops = get_optimize_ops(main_program)
W
wangguanqun 已提交
299 300
        print("the one ps optimizer_ops:", optimizer_ops)
        print("the one ps parse_by_optimizer grad_name:", grad_name)
Z
ziyoujiyi 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        oop = None

        for op in optimizer_ops:
            if ("Param" in op.input_names) and (
                    op.input("Param")[0] ==
                    context['grad_name_to_param_name'][grad_name]):
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = get_trainers(context['role_maker'])
W
wangguanqun 已提交
319 320
        self.table_num = size
        self.table_dim = single_dim
Z
ziyoujiyi 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333

        if oop.type != 'adam' and adam_d2sum == True:
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
        if context['ps_mode'] == DistributedMode.GEO:
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
        elif context['use_ps_gpu'] and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
W
wangguanqun 已提交
334 335 336 337 338
        elif ctx.is_datanorm_table():
            param_varnames = self.opt_input_map["summary"]
            attr_varnames = self.opt_attr_map["summary"]
            self.accessor_class = "summary"
        elif adam_d2sum and not is_sparse:
Z
ziyoujiyi 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
        else:
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
            if self.accessor_class == "adam_d2sum":
                #for dims
                if shape is None:
                    if is_sparse:
W
wangguanqun 已提交
353
                        shape = single_dim
Z
ziyoujiyi 已提交
354
                    else:
W
wangguanqun 已提交
355
                        shape = self.get_shard(size, pserver_num, pserver_id)
Z
ziyoujiyi 已提交
356 357 358 359 360 361 362
                dims.append(shape)

                #for initializers
                if formal_name == "Param" or formal_name == "LearningRate":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    #TODO: for dense learning_rate, can be different from sparse lr
363 364
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
365 366
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
367
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
368 369 370 371 372 373 374 375 376 377 378 379

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
W
wangguanqun 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            elif self.accessor_class == "summary":
                #for dims
                if shape is None:
                    if is_sparse:
                        shape = single_dim
                    else:
                        shape = self.get_shard(size, pserver_num, pserver_id)
                dims.append(shape)

                #for initializers
                if formal_name == "Param":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                elif formal_name == "SummaryDecayRate":
                    initializer = "fill_constant&0.99999"
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
Z
ziyoujiyi 已提交
401 402 403 404 405 406 407 408
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
409 410
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
411 412
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
413
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
414 415 416

                    if shape is None:
                        if is_sparse:
W
wangguanqun 已提交
417
                            shape = single_dim
Z
ziyoujiyi 已提交
418
                        else:
W
wangguanqun 已提交
419
                            shape = self.get_shard(size, pserver_num,
Z
ziyoujiyi 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
                                                   pserver_id)
                    dims.append(shape)

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                    initializers.append(initializer)

        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
            attrs.append("&".join([attr_varname, type_, str(value)]))

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

Z
ziyoujiyi 已提交
436 437 438 439 440 441 442 443 444 445 446 447
    # CommonAccessorParameter common
    def _set(self, proto):
        proto.name = self.accessor_class
        proto.table_name = self.table_name
        proto.params.extend(self.params)
        proto.dims.extend(self.dims)
        proto.initializers.extend(self.initializers)
        proto.entry = self.entry
        proto.trainer_num = self.trainer_num
        proto.sync = self.sync
        proto.table_num = self.table_num
        proto.table_dim = self.table_dim
Z
ziyoujiyi 已提交
448 449 450


class Tensor:
Z
ziyoujiyi 已提交
451 452 453 454 455 456 457 458 459 460 461 462
    def __init__(self, tesnor_dcit):
        self.tensor_dict = tesnor_dcit

    def _set(self, tensor_proto):
        tensor_proto.main_program_id = self.tensor_dict.get("main_program_id",
                                                            0)
        tensor_proto.startup_program_id = self.tensor_dict.get(
            "startup_program_id", 0)
        tensor_proto.feed_var_name = self.tensor_dict.get("feed_var_name", '')
        tensor_proto.fetch_var_name = self.tensor_dict.get("fetch_var_name", '')
        tensor_proto.tensor_table_class = self.tensor_dict.get(
            "tensor_table_class", '')
Z
ziyoujiyi 已提交
463 464 465 466 467 468 469


class Table:
    def __init__(self):
        self.table_class = None
        self.shard_num = -1
        self.type = None
Z
ziyoujiyi 已提交
470 471 472
        self.accessor = Accessor()
        self.shard_num = 256
        self.common = CommonAccessor()
Z
ziyoujiyi 已提交
473 474
        self.tensor = None

Z
ziyoujiyi 已提交
475 476
    def _set(self, table_proto):
        pass
Z
ziyoujiyi 已提交
477 478


Z
ziyoujiyi 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
class BarrierTable(Table):
    def __init__(self, context, idx):
        super(BarrierTable, self).__init__()
        self.type = None
        self.shard_num = 256
        self.accessor.accessor_class = 'CommMergeAccessor'
        self.common.attrs = ""
        self.common.dims = []
        self.common.params = []
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.role_maker = context['role_maker']
        self.idx = idx
        self.is_sync = context['is_sync']

    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.table_class = 'BarrierTable'
        table_proto.shard_num = 256
        table_proto.type = ps_pb2.PS_OTHER_TABLE

        table_proto.accessor.accessor_class = "CommMergeAccessor"
        table_proto.accessor.fea_dim = 0
        table_proto.accessor.embedx_dim = 0

        table_proto.common.name = ""
        table_proto.common.table_name = "barrier_table"
        table_proto.common.sync = self.is_sync
        table_proto.common.entry = 'none'

        trainer_num = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainer_num += len(self.role_maker._get_heter_worker_endpoints())
        table_proto.common.trainer_num = trainer_num
Z
ziyoujiyi 已提交
512 513


Z
ziyoujiyi 已提交
514 515 516 517 518 519
class TensorTable(Table):
    def __init__(self, idx, tensor_dict, role_maker):
        super(TensorTable, self).__init__()
        self.idx = idx
        self.tensor_dict = tensor_dict
        self.role_maker = role_maker
Z
ziyoujiyi 已提交
520

Z
ziyoujiyi 已提交
521 522 523 524
    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.type = ps_pb2.PS_OTHER_TABLE
        table_proto.table_class = self.tensor_dict.get("tensor_table_class", '')
Z
ziyoujiyi 已提交
525

Z
ziyoujiyi 已提交
526
        table_proto.accessor.accessor_class = "CommMergeAccessor"
Z
ziyoujiyi 已提交
527

Z
ziyoujiyi 已提交
528 529 530
        table_proto.common.table_name = self.tensor_dict.get("feed_var_name",
                                                             '')
        table_proto.common.trainer_num = get_trainers(self.role_maker)
Z
ziyoujiyi 已提交
531

Z
ziyoujiyi 已提交
532 533
        tensor = Tensor(self.tensor_dict)
        tensor._set(table_proto.tensor)
Z
ziyoujiyi 已提交
534 535


Z
ziyoujiyi 已提交
536 537 538 539 540 541 542 543
class SparseTable(Table):
    def __init__(self, context, send_ctx):
        super(SparseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.type = None
        self.table_class = 'MemorySparseTable'
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
544

Z
ziyoujiyi 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    def _set(self, table_proto):
        ctx = self.ctx
        if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1 or (
                ctx.is_sparse() == False):
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
        table_proto.type = ps_pb2.PS_SPARSE_TABLE
        table_proto.shard_num = self.shard_num

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]

        print('new table_name: {}'.format(self.common.table_name))
        all_table_proto = self.context[
            "user_defined_strategy"].sparse_table_configs
        usr_table_proto = all_table_proto.add()
        for proto in all_table_proto:
            if proto.table_name == self.common.table_name:
                usr_table_proto = proto
                break
        table_proto.table_class = 'MemorySparseTable'
        warnings.warn("The PS mode must use MemorySparseTable.")
        if usr_table_proto.HasField("shard_num"):
            table_proto.shard_num = usr_table_proto.shard_num
        else:
            table_proto.shard_num = 1000
            warnings.warn(
                "The shard_num of sparse table is not set, use default value 1000."
            )
Z
ziyoujiyi 已提交
575

Z
ziyoujiyi 已提交
576 577 578
        if usr_table_proto.accessor.ByteSize() == 0:
            warnings.warn(
                "The accessor of sparse table is not set, use default value.")
Z
ziyoujiyi 已提交
579

Z
ziyoujiyi 已提交
580 581 582 583
        table_proto.accessor.ParseFromString(
            usr_table_proto.accessor.SerializeToString())
        self.accessor._set(table_proto.accessor, self.common.table_name,
                           ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
584

Z
ziyoujiyi 已提交
585 586
        check_embedding_dim(table_proto.accessor, self.common.table_name,
                            ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
587

Z
ziyoujiyi 已提交
588 589 590 591 592
        adam_d2sum = self.context["user_defined_strategy"].adam_d2sum
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name,
                                ctx.program_id(), self.context)
        self.common.sync = True if self.context['is_sync'] else False
Z
ziyoujiyi 已提交
593

Z
ziyoujiyi 已提交
594
        self.common._set(table_proto.common)
Z
ziyoujiyi 已提交
595 596


Z
ziyoujiyi 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
class GeoSparseTable(SparseTable):
    def __init__(self, context, send_ctx):
        super(GeoSparseTable, self).__init__(context, send_ctx)
        self.table_class = "SparseGeoTable"
        if self.context['ps_mode'] != DistributedMode.GEO:
            raise ValueError("not geo sparse table!")

    def _set(self, table_proto):
        ctx = self.ctx
        if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1 or (
                ctx.is_sparse() == False):
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
        table_proto.type = ps_pb2.PS_SPARSE_TABLE
        table_proto.shard_num = self.shard_num

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = ctx.sections()[1]

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]
        adam_d2sum = self.context["user_defined_strategy"].adam_d2sum
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name,
                                ctx.program_id(), self.context)
        self.common.sync = False
        self.common._set(table_proto.common)


class DenseTable(Table):
    def __init__(self, context, send_ctx):
        super(DenseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
634

Z
ziyoujiyi 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    def _set(self, table_proto):
        ctx = self.ctx
        if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1 or (
                ctx.is_sparse() == True):
            return

        table_proto.table_id = ctx.table_id()

        table_proto.type = ps_pb2.PS_DENSE_TABLE
        table_proto.table_class = "CommonDenseTable"
        table_proto.shard_num = 256

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = 1

        self.common.table_name = "MergedDense"
        adam_d2sum = self.context["user_defined_strategy"].adam_d2sum
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name,
                                ctx.program_id(), self.context)
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)


class Server:
Z
ziyoujiyi 已提交
662
    def __init__(self):
Z
ziyoujiyi 已提交
663
        pass
Z
ziyoujiyi 已提交
664

Z
ziyoujiyi 已提交
665 666
    def _set(self):
        pass
Z
ziyoujiyi 已提交
667 668


Z
ziyoujiyi 已提交
669 670 671 672 673 674
class DownpourServer(Server):
    def __init__(self):
        super(DownpourServer, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
675 676 677 678


class Worker:
    def __init__(self):
Z
ziyoujiyi 已提交
679
        pass
Z
ziyoujiyi 已提交
680

Z
ziyoujiyi 已提交
681 682
    def _set(self):
        pass
Z
ziyoujiyi 已提交
683 684


Z
ziyoujiyi 已提交
685 686 687 688 689 690
class DownpourWorker(Worker):
    def __init__(self):
        super(DownpourWorker, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
691 692 693


class fsClient:
Z
ziyoujiyi 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    def __init__(self, fs_client_param):
        self.fs_client_param = fs_client_param

    def _set(self, proto):
        if not text_format.MessageToString(self.fs_client_param):
            return
        proto.uri = self.fs_client_param.uri
        proto.user = self.fs_client_param.user
        proto.passwd = self.fs_client_param.passwd
        proto.hadoop_bin = self.fs_client_param.hadoop_bin


class PsDescBuilder(object):
    def __init__(self, context):
        self.context = context
        self.is_sync = context['is_sync']
        self.ps_mode = context['ps_mode']
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.use_ps_gpu = context['use_ps_gpu']
713
        self.barrier_table_id = None
Z
ziyoujiyi 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
        self.send_ctx = get_the_one_send_context(
            self.context,
            use_origin_program=True,
            split_dense_table=self.is_heter_ps_mode)

        self.tensor_table_dict = {}  # TODO
        self._server_sub_program = []

        self.tables = self._get_tables()

        self.service = self._get_service()
        self.fs_client = self._get_fs_client()

        self.ps_desc = ps_pb2.PSParameter()

    def _get_tensor_tables(self):
        program_idx = 0
        if not self.tensor_table_dict:
            self._server_sub_program.append(Program().desc)
        tables = []
        for table_name in self.tensor_table_dict:
            tables.append(globals()['TensorTable'](len(tables), tensor_dict,
                                                   self.context['role_maker']))
            program_idx += 1
        return tables

    def _get_tables(self):
        tables = []
        for idx, (name, ctx) in enumerate(self.send_ctx.items()):
            print('####### {}\n'.format(ctx.is_sparse()))
            if ctx.is_sparse():
                if self.ps_mode == DistributedMode.GEO:
                    tables.append(globals()['GeoSparseTable'](self.context,
                                                              ctx))
                else:
                    tables.append(globals()['SparseTable'](self.context, ctx))
            else:
                tables.append(globals()['DenseTable'](self.context, ctx))
        self.tensor_tables = self._get_tensor_tables()
        tables.extend(self.tensor_tables)
        tables.append(globals()['BarrierTable'](self.context, len(tables)))
        return tables

    def _get_service(self):
        if self.use_ps_gpu:
            return GpuService()
Z
ziyoujiyi 已提交
760
        else:
Z
ziyoujiyi 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773
            return Service()

    def _get_fs_client(self):
        return fsClient(self.context["user_defined_strategy"].fs_client_param)

    def build_worker_desc(self):
        for table in self.tables:
            table_proto = self.ps_desc.worker_param.downpour_worker_param.downpour_table_param.add(
            )
            table._set(table_proto)
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
774 775
            if type(table) == BarrierTable and self.barrier_table_id is None:
                self.barrier_table_id = table.idx
Z
ziyoujiyi 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        return text_format.MessageToString(self.ps_desc)

    def build_server_desc(self):
        for table in self.tables:
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
            self.sparse_table_maps = {}
            if table_proto.type == ps_pb2.PS_SPARSE_TABLE and table_proto.common is not None:
                self.sparse_table_maps[
                    table_proto.common.table_name] = table_proto.table_id

        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        self.fs_client._set(self.ps_desc.fs_client_param)
        return text_format.MessageToString(self.ps_desc)
Z
ziyoujiyi 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807


class TheOnePSRuntime(RuntimeBase):
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
        self._server_sub_program = []
        self._heter_client = None

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
W
wangguanqun 已提交
808

Z
ziyoujiyi 已提交
809
        self.origin_main_program = context["origin_main_program"]
Z
ziyoujiyi 已提交
810 811 812 813 814
        self.origin_main_programs = context.get("origin_main_programs",
                                                [self.origin_main_program])
        self.context["origin_main_programs"] = self.origin_main_programs
        self.context["origin_startup_programs"] = context.get(
            'origin_startup_programs', [context['origin_startup_program']])
Z
ziyoujiyi 已提交
815 816 817 818 819 820
        self.context[
            'is_heter_ps_mode'] = self.role_maker._is_heter_parameter_server_mode
        self.is_heter_ps_mode = self.context['is_heter_ps_mode']
        self.context['trainer'] = TrainerRuntimeConfig(context[
            'valid_strategy'])
        self.context['ps_mode'] = self.context['trainer'].mode
W
wangguanqun 已提交
821 822
        self.context['use_ps_gpu'] = context['valid_strategy'].a_sync_configs[
            'use_ps_gpu']
Z
ziyoujiyi 已提交
823
        self.context['is_sync'] = True if self.context[
Z
ziyoujiyi 已提交
824 825
            'ps_mode'] == DistributedMode.SYNC else False
        self.context['grad_name_to_param_name'] = {}
W
wangguanqun 已提交
826 827
        self.context['tensor_table'] = {}
        build_var_distributed(self.context)
Z
ziyoujiyi 已提交
828

829
        self.endpoints = get_ps_endpoints(self.role_maker)
Z
ziyoujiyi 已提交
830
        self.string_hosts = []
831
        for idx, ep in enumerate(self.endpoints):
Z
ziyoujiyi 已提交
832 833 834 835 836 837
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            self.string_hosts.append(pshost.serialize_to_string())

        self.ps_desc_builder = PsDescBuilder(self.context)

Z
ziyoujiyi 已提交
838
    def _init_worker(self):
Z
ziyoujiyi 已提交
839
        worker_desc = self.ps_desc_builder.build_worker_desc()
Z
ziyoujiyi 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856

        if self.context['use_ps_gpu']:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
            main_program._fleet_opt[
                "worker_places"] = [int(s) for s in gpus_env.split(",")]

        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

857
        proto_txt = worker_desc
Z
ziyoujiyi 已提交
858 859 860 861 862 863 864 865 866 867
        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
        if debug:
            print("worker: \n{}".format(proto_txt))

        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=self.is_heter_ps_mode,
868
            ep_list=self.endpoints)
Z
ziyoujiyi 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
        trainer_config = self.context['trainer']

        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
        if debug:
            print("worker: \n{}".format(proto_txt))
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()

885
        kwargs["barrier_table_id"] = self.ps_desc_builder.barrier_table_id
Z
ziyoujiyi 已提交
886 887 888 889 890

        if self.context['ps_mode'] == DistributedMode.SYNC:
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

W
wangguanqun 已提交
891
        print("communicator config:", trainer_config.get_communicator_flags())
Z
ziyoujiyi 已提交
892 893 894 895
        self._communicator = Communicator(
            trainer_config.mode, kwargs,
            trainer_config.get_communicator_flags())
        self._communicator.init_with_ctx(send_ctx, dense_map, proto_txt,
Z
ziyoujiyi 已提交
896 897
                                         self.string_hosts,
                                         fluid.global_scope())
Z
ziyoujiyi 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954

        fleet.util.barrier()
        info = self._communicator.get_client_info()
        if isinstance(info, list) and len(info) > 0:
            all_info = self.role_maker._all_gather(info[0])
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
            self._communicator.set_clients(all_info)
            self._communicator.create_client_to_client_connection()
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

        if self.role_maker._is_first_worker() and self.is_heter_ps_mode:
            # for ps-heter mode load all parameters on first_worker
            init_params = get_the_one_recv_context(
                self.context, split_dense_table=True, use_origin_program=True)
        else:
            init_params = dense_map

        if not is_test:
            self._communicator.init_params(init_params)
            fleet.util.barrier()
        self._communicator.pull_dense(init_params)
        fleet.util.barrier()

        if not self._communicator.is_running():
            self._communicator.start()
        else:
            warnings.warn("communicator has been initialized, skip")

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            # for trainer wait server ready
            wait_server_ready(self.role_maker._get_pserver_endpoints())
            if self.is_heter_ps_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.is_heter_ps_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
                self._heter_client = HeterClient(next_trainers,
                                                 previous_trainers,
                                                 self.role_maker._role_id())

    def _init_server(self, dirname=None, var_names=None, **kwargs):
Z
ziyoujiyi 已提交
955
        server_desc = self.ps_desc_builder.build_server_desc()
Z
ziyoujiyi 已提交
956 957 958 959 960 961
        role_id = get_role_id(self.role_maker)
        trainers = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())

        self._server = fluid.core.DistFleetWrapper()
Z
ziyoujiyi 已提交
962 963
        self._server.init_server(server_desc, self.string_hosts, role_id,
                                 trainers, self._server_sub_program)
Z
ziyoujiyi 已提交
964

W
wangguanqun 已提交
965 966 967
        dist_varnames = get_sparse_tablenames(self.origin_main_programs, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                False)
Z
ziyoujiyi 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
                        "fleet.init server can only load sparse variables in {}".
                        format(distributed_varnames))
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

Z
ziyoujiyi 已提交
984
        sparse_table_maps = self.ps_desc_builder.sparse_table_maps
Z
ziyoujiyi 已提交
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
            self._server.load_sparse(dirname, "0", table_id)

    def _run_server(self):
        ep = get_ps_endpoint(self.role_maker)
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
        self._communicator.stop()
        if self.is_heter_ps_mode:
            assert self._heter_client != None, "heter client should not be None in heterps mode"
            self._heter_client.stop()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

W
wangguanqun 已提交
1010
            from .utils.public import _get_varname_parts
Z
ziyoujiyi 已提交
1011 1012 1013 1014
            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

1015
            if origin_varname.startswith("learning_rate_"):
Z
ziyoujiyi 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

W
wangguanqun 已提交
1026 1027 1028 1029 1030 1031 1032
    def _get_inference_model_path(self, dirname):
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        return model_path

Z
ziyoujiyi 已提交
1033 1034
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
W
wangguanqun 已提交
1035 1036
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                     True)
Z
ziyoujiyi 已提交
1037
        values = []
W
wangguanqun 已提交
1038
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1039 1040 1041 1042
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # only save sparse param to local
                try:
W
wangguanqun 已提交
1043
                    self._worker.recv_and_save_model(id, model_path)
Z
ziyoujiyi 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
                except:
                    pass
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
            values.extend(names)
        # self._worker.save_all_model(dirname, mode)
        return values

    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
                                       main_program,
                                       mode=0):

        denses = get_the_one_recv_context(
            self.context,
            is_dense=True,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
Z
ziyoujiyi 已提交
1066
            split_dense_table=self.is_heter_ps_mode,
Z
ziyoujiyi 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
            use_origin_program=True)

        sparse_varnames = self._save_sparse_params(executor, dirname, sparses,
                                                   main_program, mode)

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)
        self._communicator.pull_dense(denses)

        saved_varnames = sparse_varnames

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(saved_varnames),
                main_program.list_vars()))

        import paddle
        for var in remaining_vars:
            # if var.name not in recv_dense_varnames:
            #     continue
            tensor = var.get_value()
            paddle.save(
                tensor, os.path.join(dirname, var.name), use_binary_format=True)

    def _ps_inference_save_persistables(self,
                                        executor,
                                        dirname,
                                        main_program=None,
                                        mode=0,
                                        **kwargs):
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        if main_program is None:
1119
            main_program = self.context['origin_main_program']
Z
ziyoujiyi 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        # Todo(MrChengmo): Save optimizer status
        # self._save_distributed_persistables(executor, dirname, main_program,
        #                                     mode)
        self._worker.save_all_model(dirname, mode)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
                                           export_for_deployment=True,
                                           mode=0):
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        import paddle
        program = self.origin_main_program if main_program is None else main_program

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

W
wangguanqun 已提交
1170
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        model_basename = "__model__"
        model_basename = os.path.join(model_path, model_basename)
        paddle.save(infer_program, model_basename)

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparse_names = self._save_sparse_params(executor, dirname, sparses,
                                                main_program, mode)

        denses = get_the_one_recv_context(
            self.context,
            is_dense=True,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        self._communicator.pull_dense(denses)

        generate_vars = self.context[
            "user_defined_strategy"].trainer_desc_configs["stat_var_names"]
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(sparse_names),
                infer_program.list_vars()))

        for var in remaining_vars:
            tensor = var.get_value()
            paddle.save(
                tensor,
                os.path.join(model_path, var.name),
                use_binary_format=True)

    def _save_inference_model(self, *args, **kwargs):
        self._ps_inference_save_inference_model(*args, **kwargs)

    def _save_persistables(self, *args, **kwargs):
        self._ps_inference_save_persistables(*args, **kwargs)

    def _load_sparse_params(self, dirname, context, main_program, mode):
W
wangguanqun 已提交
1212
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
Z
ziyoujiyi 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
                                                     True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

    def _ps_inference_load_inference_model(self,
                                           dirname,
                                           mode=0,
                                           main_program=None):
        if main_program is None:
            main_program = self.origin_main_program

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        denses = get_the_one_recv_context(
            self.context,
            is_dense=True,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(loaded_varnames),
                main_program.list_vars()))

        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
            tensor = paddle.load(os.path.join(model_path, var.name))
            var.set_value(tensor)

        self._communicator.init_params(denses)

    def _load_distributed_persistables(self, path, mode):
        self._worker.load_model(path, mode)

    def load_model(self, path, mode):
        if mode == 0 or mode == 3:
            self._load_distributed_persistables(path, mode)
        else:
            self._ps_inference_load_inference_model(path, mode)

    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0

        fleet.util.barrier()
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1293
            sparses = get_the_one_recv_context(
Z
ziyoujiyi 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302
                self.context,
                is_dense=False,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode,
                use_origin_program=True)

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()