pad_op.cc 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

S
sneaxiy 已提交
15
#include <memory>
16

17
#include "paddle/fluid/framework/infershape_utils.h"
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/platform/complex.h"
20
#include "paddle/phi/infermeta/unary.h"
W
wanghaoshuang 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using framework::Tensor;

class PadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

31
  void InferShape(framework::InferShapeContext* ctx) const override {
32 33
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Pad");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Pad");
W
wanghaoshuang 已提交
34 35 36
  }
};

W
wanghaoshuang 已提交
37
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
38
 public:
Y
Yu Yang 已提交
39
  void Make() override {
W
wanghaoshuang 已提交
40 41 42 43
    AddInput("X",
             "The input of pad op. "
             "The input should be a k-D tensor(k > 0 and k < 7)");
    AddOutput("Out",
K
kexinzhao 已提交
44
              "The output of pad op. "
45
              "A tensor with the same shape as X.");
K
kexinzhao 已提交
46 47 48 49 50 51 52 53 54 55 56
    AddAttr<std::vector<int>>(
        "paddings",
        "(vector<int>) "
        "A list<int> to describe the padding rules for each dimension. "
        "For 2-D image tensor, paddings=[0, 1, 2, 3] means "
        "padding 0 row to top, 1 row to bottom, 2 columns to left "
        "and 3 columns to right. Size of paddings should be equal to "
        "2 * dimension size of the input tensor.");
    AddAttr<float>("pad_value",
                   "(float, default 0.0) "
                   "The value to fill the padded areas.")
57 58
        .SetDefault(0.0f)
        .SupportTensor();
W
wanghaoshuang 已提交
59
    AddComment(R"DOC(
K
kexinzhao 已提交
60 61 62 63
Pad Operator.

Pad input into output, as specified by paddings and pad_value. 
The input should be a k-D tensor(k > 0 and k < 7). As an example:
W
wanghaoshuang 已提交
64 65 66 67

Given:

X = [[1, 2],
K
kexinzhao 已提交
68
     [3, 4]],
W
wanghaoshuang 已提交
69

K
kexinzhao 已提交
70
paddings = [0, 1, 1, 2],
W
wanghaoshuang 已提交
71 72 73

and

K
kexinzhao 已提交
74
pad_value = 0,
Q
Qiao Longfei 已提交
75

K
kexinzhao 已提交
76
we have:
W
wanghaoshuang 已提交
77 78 79 80

Out = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]
K
kexinzhao 已提交
81

W
wanghaoshuang 已提交
82 83 84 85 86 87 88 89
)DOC");
  }
};

class PadOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

90
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
91 92
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
S
sneaxiy 已提交
93 94 95
      auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
      auto& paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
      for (int i = 0; i < dout_dims.size(); ++i) {
96 97 98
        if (ctx->IsRuntime() || (dout_dims[i] != -1)) {
          dout_dims[i] -= (paddings[i * 2] + paddings[i * 2 + 1]);
        }
S
sneaxiy 已提交
99 100
      }
      ctx->SetOutputDim(x_grad_name, dout_dims);
W
wanghaoshuang 已提交
101
    }
W
wanghaoshuang 已提交
102 103 104
  }
};

H
hong 已提交
105 106
template <typename T>
class PadOpGradMaker : public framework::SingleGradOpMaker<T> {
107
 public:
H
hong 已提交
108
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
109 110

 protected:
111
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
112 113 114
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    bind->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
115
    bind->SetType("pad_grad");
Y
Yu Yang 已提交
116
  }
117 118
};

C
ceci3 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131
template <typename T>
class PadOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("pad");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

W
wanghaoshuang 已提交
132 133 134 135
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
136 137
DECLARE_INFER_SHAPE_FUNCTOR(pad,
                            PadInferShapeFunctor,
138
                            PD_INFER_META(phi::PadInferMeta));
139

140 141 142
REGISTER_OPERATOR(pad,
                  ops::PadOp,
                  ops::PadOpMaker,
H
hong 已提交
143
                  ops::PadOpGradMaker<paddle::framework::OpDesc>,
144 145
                  ops::PadOpGradMaker<paddle::imperative::OpBase>,
                  PadInferShapeFunctor);
146 147
REGISTER_OPERATOR(pad_grad,
                  ops::PadOpGrad,
C
ceci3 已提交
148 149
                  ops::PadOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::PadOpDoubleGradMaker<paddle::imperative::OpBase>);