elementwise_max_op.cu 3.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_max_op.h"
F
fengjiayi 已提交
16

17 18 19 20 21 22 23 24 25 26
namespace paddle {
namespace operators {

template <typename T>
class ElementwiseMaxKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    std::vector<const framework::Tensor*> ins;
    std::vector<framework::Tensor*> outs;
27
    const auto& dev_ctx =
28 29 30
        ctx.template device_context<platform::CUDADeviceContext>();

    int axis = PackTensorsIntoVector<T>(ctx, &ins, &outs);
31 32 33
    paddle::operators::LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T,
                                                   T>(dev_ctx, ins, &outs, axis,
                                                      MaxFunctor<T>());
34 35 36
  }
};

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
ElementwiseMaxGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  const auto& dev_ctx =
      ctx.template device_context<platform::CUDADeviceContext>();
  const auto place = ctx.GetPlace();
  if (dx != nullptr && dy != nullptr) {
    std::vector<const framework::Tensor*> ins = {x, y, dout};
    GetGradXAndYOut<ElementwiseType::kTernary, T>(
        dev_ctx, place, axis, ins, dout, dx, dy, MaxGradXYFunctor<T, T>());
  } else if (dx != nullptr && dy == nullptr) {
    std::vector<const framework::Tensor*> ins = {x, y, dout};
    GetGradXOrYOut<ElementwiseType::kTernary, T>(
        dev_ctx, place, axis, ins, dout, dx, MaxGradXFunctor<T>());
  } else if (dx == nullptr && dy != nullptr) {
    std::vector<const framework::Tensor*> ins = {x, y, dout};
    GetGradXOrYOut<ElementwiseType::kTernary, T>(
        dev_ctx, place, axis, ins, dout, dy, MaxGradYFunctor<T>());
  }
}

63 64 65
}  // namespace operators
}  // namespace paddle

66 67
namespace ops = paddle::operators;

F
fengjiayi 已提交
68 69
REGISTER_OP_CUDA_KERNEL(
    elementwise_max,
G
Guoxia Wang 已提交
70 71
    ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::float16>,
72 73
    ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::bfloat16>,
F
fengjiayi 已提交
74 75 76 77 78 79
    ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, float>,
    ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int>,
    ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
    elementwise_max_grad,
G
Guoxia Wang 已提交
80 81
    ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::float16>,
82 83
    ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::bfloat16>,
F
fengjiayi 已提交
84 85 86 87 88
    ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext,
                                  int64_t>);