test_jvp_and_transpose.py 39.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
from paddle.fluid.layer_helper import LayerHelper
19
from paddle.incubate.autograd.primrules import _jvp, _transpose
20 21 22 23

paddle.enable_static()


24
# --------------------- Test linearize rules ----------------------- #
25 26 27 28 29 30
class TestAddPJVPAndTranspose(unittest.TestCase):
    def setUp(self):
        self.main_program = paddle.static.Program()
        self.startup_program = paddle.static.Program()
        self.layer_help = LayerHelper('TestPrim2Orig')

31 32 33
        with paddle.static.program_guard(
            self.main_program, self.startup_program
        ):
34 35 36 37 38 39 40 41 42
            self.init_data()

    def init_data(self):
        # Set prim op
        self.op_type = 'add_p'
        X = paddle.static.data(name='X', shape=[2, 2], dtype='float')
        Y = paddle.static.data(name='Y', shape=[2, 2], dtype='float')
        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
43 44 45
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[2, 2], dtype='float')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[2, 2], dtype='float')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        # Set transpose
        check_dot = lambda v: True
        Z_BAR = paddle.static.data(name='Z_BAR', shape=[2, 2], dtype='float')
        self.transpose_args = (check_dot, Z_BAR)
        self.transpose_out_shape_map = {0: X, 1: Y}

        self.all_ops = [
            # prim op:
            'add_p',
            # jvp op:
            'add_p',
            # transpose op:
        ]

    def test_op(self):
70 71 72 73 74 75 76 77 78
        with paddle.static.program_guard(
            self.main_program, self.startup_program
        ):
            op = self.layer_help.append_op(
                type=self.op_type,
                inputs=self.prim_input,
                outputs=self.prim_output,
                attrs=self.prim_attrs,
            )
79 80

            jvp_out = _jvp(op, *self.jvp_args)
81
            jvp_out = paddle.utils.flatten(jvp_out)
82 83 84 85 86 87
            for k, v in self.jvp_out_shape_map.items():
                self.assertEqual(jvp_out[k].shape, v.shape)

            # Some prim ops dont have transpose rule
            if hasattr(self, 'transpose_args'):
                transpose_out = _transpose(op, *self.transpose_args)
88
                transpose_out = paddle.utils.flatten(transpose_out)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
                for k, v in self.transpose_out_shape_map.items():
                    self.assertEqual(transpose_out[k].shape, v.shape)

            all_ops = [op.type for op in self.main_program.block(0).ops]
            self.assertEqual(sorted(all_ops), sorted(self.all_ops))


class TestSubPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'sub_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='int64')
        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
104 105 106
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[5, 6], dtype='int64')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        # Set transpose
        check_dot = lambda v: True
        Z_BAR = paddle.static.data(name='Z_BAR', shape=[5, 6], dtype='int64')
        self.transpose_args = (check_dot, Z_BAR)
        self.transpose_out_shape_map = {0: X, 1: Y}

        self.all_ops = [
            # prim op:
            'sub_p',
            # jvp op:
            'sub_p',
            # transpose op:
            'fill_constant_p',
129
            'sub_p',
130 131 132 133 134 135 136 137 138 139 140
        ]


class TestMulPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'mul_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='int64')
        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
141 142 143
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
144 145 146 147 148 149 150 151 152 153 154 155 156
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[5, 6], dtype='int64')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        # Set transpose
        check_dot = lambda v: v is X
        Z_BAR = paddle.static.data(name='Z_BAR', shape=[5, 6], dtype='int64')
        self.transpose_args = (check_dot, Z_BAR)
157 158 159
        self.transpose_out_shape_map = {
            0: X,
        }
160 161 162 163 164 165 166 167 168

        self.all_ops = [
            # prim op:
            'mul_p',
            # jvp op:
            'mul_p',
            'mul_p',
            'add_p',
            # transpose op:
169
            'mul_p',
170 171 172 173 174 175 176 177 178 179 180
        ]


class TestDivPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'div_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='int64')
        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
181 182 183
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
184 185 186 187 188 189 190 191 192 193 194 195 196
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[5, 6], dtype='int64')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        # Set transpose
        check_dot = lambda v: v is X
        Z_BAR = paddle.static.data(name='Z_BAR', shape=[5, 6], dtype='int64')
        self.transpose_args = (check_dot, Z_BAR)
197 198 199
        self.transpose_out_shape_map = {
            0: X,
        }
200 201 202 203 204 205 206 207 208 209 210

        self.all_ops = [
            # prim op:
            'div_p',
            # jvp op:
            'div_p',
            'div_p',
            'mul_p',
            'mul_p',
            'sub_p',
            # transpose op:
211
            'div_p',
212 213 214 215 216 217 218 219
        ]


class TestSqrtPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'sqrt_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
220 221 222
        self.prim_input = {
            'X': X,
        }
223
        self.prim_output = {
224 225 226
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
227 228 229 230 231
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
232
        self.jvp_args = (X_DOT,)
233 234 235 236 237 238 239 240 241 242 243 244 245 246
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        self.all_ops = [
            # prim op:
            'sqrt_p',
            # jvp op:
            'div_p',
            'mul_p',
            'fill_constant_p',
            # 'sqrt_p',
            # transpose op:
        ]


J
Jiabin Yang 已提交
247 248 249 250 251 252 253 254 255
class TestRSqrtPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'rsqrt_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        self.prim_input = {
            'X': X,
        }
        self.prim_output = {
256 257 258
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
J
Jiabin Yang 已提交
259 260 261 262 263
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
264
        self.jvp_args = (X_DOT,)
J
Jiabin Yang 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        self.all_ops = [
            # prim op:
            'rsqrt_p',
            # jvp op:
            'div_p',
            'div_p',
            'mul_p',
            'fill_constant_p',
            # 'sqrt_p',
            # transpose op:
        ]


280 281 282 283 284
class TestTanhPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'tanh_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
285 286 287
        self.prim_input = {
            'X': X,
        }
288
        self.prim_output = {
289 290 291
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
292 293 294 295 296
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
297
        self.jvp_args = (X_DOT,)
298 299 300 301 302 303 304 305 306 307 308 309 310 311
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        self.all_ops = [
            # prim op:
            'tanh_p',
            # jvp op:
            'mul_p',
            'sub_p',
            'fill_constant_p',
            'mul_p',
            # transpose op:
        ]


312 313 314 315 316 317 318 319 320
class TestSinPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'sin_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        self.prim_input = {
            'X': X,
        }
        self.prim_output = {
321 322 323
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
324 325 326 327 328
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
329
        self.jvp_args = (X_DOT,)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        self.all_ops = [
            # prim op:
            'sin_p',
            # jvp op:
            'mul_p',
            'cos_p',
            # transpose op:
        ]


class TestCosPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'cos_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        self.prim_input = {
            'X': X,
        }
        self.prim_output = {
351 352 353
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
354 355 356 357 358
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
359
        self.jvp_args = (X_DOT,)
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        self.all_ops = [
            # prim op:
            'cos_p',
            # jvp op:
            'mul_p',
            'sin_p',
            'fill_constant_p',
            'sub_p'
            # transpose op:
        ]


class TestExpPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'exp_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        self.prim_input = {
            'X': X,
        }
        self.prim_output = {
383 384 385
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
386 387 388 389 390
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
391
        self.jvp_args = (X_DOT,)
392 393 394 395 396 397 398 399 400 401 402
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        self.all_ops = [
            # prim op:
            'exp_p',
            # jvp op:
            'mul_p',
            # transpose op:
        ]


403 404 405 406 407 408 409 410 411
class TestErfPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'erf_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        self.prim_input = {
            'X': X,
        }
        self.prim_output = {
412 413 414
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
415 416 417 418 419
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
420
        self.jvp_args = (X_DOT,)
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        self.all_ops = [
            # prim op:
            'erf_p',
            # jvp op:
            'exp_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'mul_p',
            'mul_p',
            'pow_p',
            'sub_p',
            # transpose op:
        ]


439 440 441 442 443 444 445 446 447
class TestAbsPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'abs_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        self.prim_input = {
            'X': X,
        }
        self.prim_output = {
448 449 450
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
451 452 453 454 455
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
456
        self.jvp_args = (X_DOT,)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        self.all_ops = [
            # prim op:
            'abs_p',
            # jvp op:
            'select_p',
            'ge_p',
            'fill_constant_p',
            'fill_constant_p',
            'sub_p',
            # transpose op:
        ]


472 473 474 475 476 477 478 479 480
class TestCastPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'cast_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        self.prim_input = {
            'X': X,
        }
        self.prim_output = {
481 482 483
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
484 485 486 487 488
        }
        self.prim_attrs = {'dtype': paddle.float64}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
489
        self.jvp_args = (X_DOT,)
490 491 492 493 494 495 496 497 498 499 500 501 502 503
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        # Set transpose
        check_dot = lambda v: True
        Y_BAR = paddle.static.data(name='Y_BAR', shape=[5, 6], dtype='float')
        self.transpose_args = (check_dot, Y_BAR)
        self.transpose_out_shape_map = {0: X}

        self.all_ops = [
            # prim op:
            'cast_p',
            # jvp op:
            'cast_p',
            # transpose op:
504
            'cast_p',
505 506 507
        ]


508 509 510 511 512 513 514 515 516
class TestLogPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'log_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        self.prim_input = {
            'X': X,
        }
        self.prim_output = {
517 518 519
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
520 521 522 523 524
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
525
        self.jvp_args = (X_DOT,)
526 527 528 529 530 531 532 533 534 535 536
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        self.all_ops = [
            # prim op:
            'log_p',
            # jvp op:
            'div_p',
            # transpose op:
        ]


537 538 539 540 541
class TestReshapePJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'reshape_p'
        X = paddle.static.data(name='X', shape=[8, 8], dtype='int64')
542 543 544
        self.prim_input = {
            'X': X,
        }
545
        self.prim_output = {
546 547 548
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
549 550 551 552 553
        }
        self.prim_attrs = {'shape': [2, 32]}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[8, 8], dtype='int64')
554
        self.jvp_args = (X_DOT,)
555 556 557 558 559 560
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        # Set transpose
        check_dot = lambda v: v is X
        Y_BAR = paddle.static.data(name='Y_BAR', shape=[2, 32], dtype='int64')
        self.transpose_args = (check_dot, Y_BAR)
561 562 563
        self.transpose_out_shape_map = {
            0: X,
        }
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

        self.all_ops = [
            # prim op:
            'reshape_p',
            # jvp op:
            'reshape_p',
            # transpose op:
            'reshape_p',
        ]


class TestBroadcastPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'broadcast_p'
        X = paddle.static.data(name='X', shape=[10, 1], dtype='int64')
580 581 582
        self.prim_input = {
            'X': X,
        }
583
        self.prim_output = {
584 585 586
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
587 588 589 590 591
        }
        self.prim_attrs = {'shape': [2, 10, 7]}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[10, 7], dtype='int64')
592
        self.jvp_args = (X_DOT,)
593 594 595 596
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        # Set transpose
        check_dot = lambda v: v is X
597 598 599
        Y_BAR = paddle.static.data(
            name='Y_BAR', shape=[2, 10, 7], dtype='int64'
        )
600
        self.transpose_args = (check_dot, Y_BAR)
601 602 603
        self.transpose_out_shape_map = {
            0: X,
        }
604 605 606 607 608 609 610

        self.all_ops = [
            # prim op:
            'broadcast_p',
            # jvp op:
            'broadcast_p',
            # transpose op:
611
            'reduce_sum_p',
612
            'reshape_p',
613 614 615 616 617 618 619 620
        ]


class TestTransposePJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'transpose_p'
        X = paddle.static.data(name='X', shape=[2, 3, 4, 5], dtype='int64')
621 622 623
        self.prim_input = {
            'X': X,
        }
624
        self.prim_output = {
625 626 627
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
628 629 630 631
        }
        self.prim_attrs = {'axis': [0, 2, 3, 1]}

        # Set JVP
632 633 634 635
        X_DOT = paddle.static.data(
            name='X_DOT', shape=[2, 3, 4, 5], dtype='int64'
        )
        self.jvp_args = (X_DOT,)
636 637 638 639
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        # Set transpose
        check_dot = lambda v: v is X
640 641 642
        Y_BAR = paddle.static.data(
            name='Y_BAR', shape=[2, 4, 5, 3], dtype='int64'
        )
643
        self.transpose_args = (check_dot, Y_BAR)
644 645 646
        self.transpose_out_shape_map = {
            0: X,
        }
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

        self.all_ops = [
            # prim op:
            'transpose_p',
            # jvp op:
            'transpose_p',
            # transpose op:
            'transpose_p',
        ]


class TestSplitPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'split_p'
        X = paddle.static.data(name='X', shape=[2, 7, 10], dtype='int64')
663 664 665
        self.prim_input = {
            'X': X,
        }
666 667 668
        self.prim_output = {
            'YS': [
                self.layer_help.create_variable_for_type_inference(
669 670 671
                    dtype=X.dtype
                )
                for i in range(4)
672 673 674 675 676
            ]
        }
        self.prim_attrs = {'num_or_sections': [2, 3, 4, 1], 'axis': 2}

        # Set JVP
677 678 679 680
        X_DOT = paddle.static.data(
            name='X_DOT', shape=[2, 7, 10], dtype='int64'
        )
        self.jvp_args = (X_DOT,)
681 682 683 684 685 686 687 688 689 690
        self.jvp_out_shape_map = {
            0: self.prim_output['YS'][0],
            1: self.prim_output['YS'][1],
            2: self.prim_output['YS'][2],
            3: self.prim_output['YS'][3],
        }

        # Set transpose
        check_dot = lambda v: v is X
        YS_BAR = [
691 692 693 694
            paddle.static.data(name='Y_BAR1', shape=[2, 7, 2], dtype='int64'),
            paddle.static.data(name='Y_BAR2', shape=[2, 7, 3], dtype='int64'),
            paddle.static.data(name='Y_BAR3', shape=[2, 7, 4], dtype='int64'),
            paddle.static.data(name='Y_BAR4', shape=[2, 7, 1], dtype='int64'),
695 696
        ]
        self.transpose_args = (check_dot, YS_BAR)
697 698 699
        self.transpose_out_shape_map = {
            0: X,
        }
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

        self.all_ops = [
            # prim op:
            'split_p',
            # jvp op:
            'split_p',
            # transpose op:
            'concat_p',
        ]


class TestConcatPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'concat_p'
        X = paddle.static.data(name='X', shape=[3, 9, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[3, 2, 5], dtype='float64')
        Z = paddle.static.data(name='Z', shape=[3, 3, 5], dtype='float64')
718 719 720
        self.prim_input = {
            'XS': [X, Y, Z],
        }
721
        self.prim_output = {
722 723 724
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
725 726 727 728 729
        }
        self.prim_attrs = {'axis': 1}

        # Set JVP
        XS_DOT = [
730 731 732
            paddle.static.data(name='X_DOT1', shape=[3, 9, 5], dtype='float64'),
            paddle.static.data(name='X_DOT2', shape=[3, 2, 5], dtype='float64'),
            paddle.static.data(name='X_DOT3', shape=[3, 3, 5], dtype='float64'),
733
        ]
734
        self.jvp_args = (XS_DOT,)
735 736 737 738
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        # Set transpose
        check_dot = lambda v: v is X or v is Y or v is Z
739 740 741
        Y_BAR = paddle.static.data(
            name='Y_BAR', shape=[3, 14, 5], dtype='float64'
        )
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        self.transpose_args = (check_dot, Y_BAR)
        self.transpose_out_shape_map = {
            0: X,
            1: Y,
            2: Z,
        }

        self.all_ops = [
            # prim op:
            'concat_p',
            # jvp op:
            'concat_p',
            # transpose op:
            'split_p',
        ]


759
class TestReduceSumPJVPAndTranspose(TestAddPJVPAndTranspose):
760 761
    def init_data(self):
        # Set prim op
762
        self.op_type = 'reduce_sum_p'
763 764 765
        X = paddle.static.data(name='X', shape=[2, 3, 4, 5], dtype='float64')
        self.prim_input = {'X': X}
        self.prim_output = {
766 767 768
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
769 770 771 772
        }
        self.prim_attrs = {'axis': [2], 'keepdim': False}

        # Set JVP
773 774 775 776
        X_DOT = paddle.static.data(
            name='X_DOT1', shape=[2, 3, 4, 5], dtype='float64'
        )
        self.jvp_args = (X_DOT,)
777 778 779 780
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        # Set transpose
        check_dot = lambda v: v is X
781 782 783
        Y_BAR = paddle.static.data(
            name='Y_BAR', shape=[2, 3, 5], dtype='float64'
        )
784
        self.transpose_args = (check_dot, Y_BAR)
785 786 787
        self.transpose_out_shape_map = {
            0: X,
        }
788 789 790

        self.all_ops = [
            # prim op:
791
            'reduce_sum_p',
792
            # jvp op:
793
            'reduce_sum_p',
794 795 796 797 798 799 800 801 802 803 804 805 806 807
            # transpose op:
            'reshape_p',
            'broadcast_p',
        ]


class TestMatmulPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'matmul_p'
        X = paddle.static.data(name='X', shape=[2, 3], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[3, 4], dtype='float64')
        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
808 809 810
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
811 812 813 814 815 816 817 818 819 820 821 822 823
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[2, 3], dtype='float64')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[3, 4], dtype='float64')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        # Set transpose
        check_dot = lambda v: v is X
        Z_BAR = paddle.static.data(name='Z_BAR', shape=[2, 4], dtype='float64')
        self.transpose_args = (check_dot, Z_BAR)
824 825 826
        self.transpose_out_shape_map = {
            0: X,
        }
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

        self.all_ops = [
            # prim op:
            'matmul_p',
            # jvp op:
            'matmul_p',
            'matmul_p',
            'add_p',
            # transpose op:
            'matmul_p',
            'transpose_p',
        ]


class TestSliceSelectPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'slice_select_p'
        X = paddle.static.data(name='X', shape=[3, 20], dtype='float64')
846 847 848
        self.prim_input = {
            'X': X,
        }
849
        self.prim_output = {
850 851 852
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
853 854 855 856 857
        }
        self.prim_attrs = {
            'axis': [1],
            'starts': [0],
            'ends': [20],
858
            'strides': [2],
859 860 861 862
        }

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[3, 20], dtype='float64')
863
        self.jvp_args = (X_DOT,)
864 865 866 867 868 869
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        # Set transpose
        check_dot = lambda v: v is X
        Y_BAR = paddle.static.data(name='Y_BAR', shape=[3, 10], dtype='float64')
        self.transpose_args = (check_dot, Y_BAR)
870 871 872
        self.transpose_out_shape_map = {
            0: X,
        }
873 874 875 876 877 878 879 880 881 882 883 884

        self.all_ops = [
            # prim op:
            'slice_select_p',
            # jvp op:
            'slice_select_p',
            # transpose op:
            'slice_assign_p',
            'fill_constant_p',
        ]


C
Charles-hit 已提交
885
class TestSliceAssignPJVPAndTranspose1(TestAddPJVPAndTranspose):
886 887 888 889 890 891 892
    def init_data(self):
        # Set prim op
        self.op_type = 'slice_assign_p'
        X = paddle.static.data(name='X', shape=[3, 20], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[3, 5], dtype='float64')
        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
893 894 895
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
896 897 898 899 900
        }
        self.prim_attrs = {
            'axis': [1],
            'starts': [0],
            'ends': [10],
901
            'strides': [2],
902 903 904 905 906 907 908 909 910
        }

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[3, 20], dtype='float64')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[3, 5], dtype='float64')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        # Set transpose
C
Charles-hit 已提交
911
        check_dot = lambda v: v is X
912 913
        Z_BAR = paddle.static.data(name='Z_BAR', shape=[3, 20], dtype='float64')
        self.transpose_args = (check_dot, Z_BAR)
C
Charles-hit 已提交
914
        self.transpose_out_shape_map = {0: X}
915 916 917 918 919 920

        self.all_ops = [
            # prim op:
            'slice_assign_p',
            # jvp op:
            'slice_assign_p',
C
Charles-hit 已提交
921 922 923 924
            "slice_assign_p",
            "add_p",
            "fill_constant_p",
            "fill_constant_p",
925 926
            # transpose op:
            'slice_assign_p',
C
Charles-hit 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
            'fill_constant_p',
        ]


class TestSliceAssignPJVPAndTranspose2(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'slice_assign_p'
        X = paddle.static.data(name='X', shape=[3, 20], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[3, 5], dtype='float64')
        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
        }
        self.prim_attrs = {
            'axis': [1],
            'starts': [0],
            'ends': [10],
            'strides': [2],
        }

        # Set JVP
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[3, 5], dtype='float64')
        self.jvp_args = (None, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        # Set transpose
        check_dot = lambda v: v is Y
        Z_BAR = paddle.static.data(name='Z_BAR', shape=[3, 20], dtype='float64')
        self.transpose_args = (check_dot, Z_BAR)
        self.transpose_out_shape_map = {1: Y}

        self.all_ops = [
            # prim op:
            'slice_assign_p',
            # jvp op:
            'slice_assign_p',
            "fill_constant_p",
            # transpose op:
968
            'slice_select_p',
969
            'fill_constant_p',
970 971 972
        ]


C
Charles-hit 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
class TestSliceAssignPJVPAndTranspose3(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'slice_assign_p'
        X = paddle.static.data(name='X', shape=[3, 20], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[3, 5], dtype='float64')
        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
        }
        self.prim_attrs = {
            'axis': [1],
            'starts': [0],
            'ends': [10],
            'strides': [2],
        }

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[3, 20], dtype='float64')
        self.jvp_args = (X_DOT, None)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        # Set transpose
        check_dot = lambda v: v is X
        Z_BAR = paddle.static.data(name='Z_BAR', shape=[3, 20], dtype='float64')
        self.transpose_args = (check_dot, Z_BAR)
        self.transpose_out_shape_map = {0: X}

        self.all_ops = [
            # prim op:
            'slice_assign_p',
            # jvp op:
            'slice_assign_p',
            "fill_constant_p",
            # transpose op:
            'slice_assign_p',
            'fill_constant_p',
        ]


1015 1016 1017 1018 1019
class TestGatherPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'gather_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')
1020 1021 1022
        IndexTensor = paddle.static.data(
            name='IndexTensor', shape=[3], dtype='int32'
        )
1023 1024
        self.prim_input = {'X': X, 'IndexTensor': IndexTensor}
        self.prim_output = {
1025 1026 1027
            'Y': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
1028 1029 1030 1031 1032 1033 1034
        }
        self.prim_attrs = {'axis': 1}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[9, 5], dtype='float64')
        self.jvp_args = (
            X_DOT,
1035 1036
            IndexTensor,
        )
1037 1038 1039 1040 1041 1042
        self.jvp_out_shape_map = {0: self.prim_output['Y']}

        # Set transpose
        check_dot = lambda v: v is X
        Y_BAR = paddle.static.data(name='Y_BAR', shape=[9, 3], dtype='float64')
        self.transpose_args = (check_dot, Y_BAR)
1043 1044 1045
        self.transpose_out_shape_map = {
            0: X,
        }
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

        self.all_ops = [
            # prim op:
            'gather_p',
            # jvp op:
            'gather_p',
            # transpose op:
            'scatter_add_p',
            'fill_constant_p',
        ]


class TestScatterAddPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'scatter_add_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[9, 3], dtype='float64')
1064 1065 1066
        IndexTensor = paddle.static.data(
            name='IndexTensor', shape=[3], dtype='int32'
        )
1067 1068
        self.prim_input = {'X': X, 'Y': Y, 'IndexTensor': IndexTensor}
        self.prim_output = {
1069 1070 1071
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
        }
        self.prim_attrs = {'axis': 1}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[9, 5], dtype='float64')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[9, 3], dtype='float64')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        # Set transpose
        check_dot = lambda v: v is X or v is Y
        Z_BAR = paddle.static.data(name='Z_BAR', shape=[9, 5], dtype='float64')
        self.transpose_args = (check_dot, Z_BAR)
        self.transpose_out_shape_map = {0: X, 1: Y}

        self.all_ops = [
            # prim op:
            'scatter_add_p',
            # jvp op:
            'scatter_add_p',
            # transpose op:
            'scatter_add_p',
            'fill_constant_p',
1095
            'gather_p',
1096 1097 1098
        ]


1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
class TestSelectPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'select_p'
        Cond = paddle.static.data(name='Condition', shape=[9, 5], dtype='bool')
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[9, 5], dtype='float64')

        self.prim_input = {'Condition': Cond, 'X': X, 'Y': Y}
        self.prim_output = {
1109 1110 1111
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
1112 1113 1114 1115
        }
        self.prim_attrs = {}

        # Set JVP
1116 1117 1118
        Cond_DOT = paddle.static.data(
            name='Cond_DOT', shape=[9, 5], dtype='float64'
        )
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        X_DOT = paddle.static.data(name='X_DOT', shape=[9, 5], dtype='float64')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[9, 5], dtype='float64')
        self.jvp_args = (Cond_DOT, X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        # Set transpose
        check_dot = lambda v: True
        Z_BAR = paddle.static.data(name='Z_BAR', shape=[9, 5], dtype='float64')
        self.transpose_args = (check_dot, Z_BAR)
        self.transpose_out_shape_map = {0: X, 1: Y}

        self.all_ops = [
            # prim op:
            'select_p',
            # jvp op:
            'select_p',
            # transpose op:
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'select_p',
            'select_p',
        ]


class TestEqPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'eq_p'
        X = paddle.static.data(name='X', shape=[4, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[4, 5], dtype='float64')

        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
1153 1154 1155
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[4, 5], dtype='float64')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[4, 5], dtype='float64')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        self.all_ops = [
            # prim op:
            'eq_p',
            # jvp op:
            'fill_constant_p',
            # transpose op:
        ]


1174 1175 1176 1177 1178 1179 1180 1181 1182
class TestGtPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'gt_p'
        X = paddle.static.data(name='X', shape=[4, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[4, 5], dtype='float64')

        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
1183 1184 1185
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[4, 5], dtype='float64')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[4, 5], dtype='float64')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        self.all_ops = [
            # prim op:
            'gt_p',
            # jvp op:
            'fill_constant_p',
            # transpose op:
        ]


class TestGePJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'ge_p'
        X = paddle.static.data(name='X', shape=[4, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[4, 5], dtype='float64')

        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
1213 1214 1215
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[4, 5], dtype='float64')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[4, 5], dtype='float64')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        self.all_ops = [
            # prim op:
            'ge_p',
            # jvp op:
            'fill_constant_p',
            # transpose op:
        ]


class TestNePJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'ne_p'
        X = paddle.static.data(name='X', shape=[4, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[4, 5], dtype='float64')

        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
1243 1244 1245
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[4, 5], dtype='float64')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[4, 5], dtype='float64')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        self.all_ops = [
            # prim op:
            'ne_p',
            # jvp op:
            'fill_constant_p',
            # transpose op:
        ]


1264 1265 1266 1267 1268 1269 1270 1271
class TestPowPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'pow_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='float32')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='float32')
        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
1272 1273 1274
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='float32')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[5, 6], dtype='float32')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        self.all_ops = [
            # prim op:
            'pow_p',
            # jvp op:
            'fill_constant_p',
            'fill_constant_p',
            'eq_p',
            'select_p',
            'sub_p',
            'mul_p',
            'mul_p',
            'pow_p',
            'mul_p',
            'mul_p',
            'log_p',
            'add_p'
            # transpose op:
        ]


1304 1305 1306 1307 1308 1309 1310 1311
class TestMaxPJVPAndTranspose(TestAddPJVPAndTranspose):
    def init_data(self):
        # Set prim op
        self.op_type = 'max_p'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='float32')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='float32')
        self.prim_input = {'X': X, 'Y': Y}
        self.prim_output = {
1312 1313 1314
            'Z': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        }
        self.prim_attrs = {}

        # Set JVP
        X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='float32')
        Y_DOT = paddle.static.data(name='Y_DOT', shape=[5, 6], dtype='float32')
        self.jvp_args = (X_DOT, Y_DOT)
        self.jvp_out_shape_map = {0: self.prim_output['Z']}

        self.all_ops = [
            # prim op:
            'max_p',
            # jvp op:
            'fill_constant_p',
            'eq_p',
            'select_p',
            # transpose op:
        ]


1335 1336
if __name__ == '__main__':
    unittest.main()