test_strategy.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# import yaml
import unittest
17

18
from paddle.distributed.fleet import auto
19 20 21 22 23 24 25 26


class TestStrategy(unittest.TestCase):
    def test_default_config(self):
        strategy = auto.Strategy()

        recompute = strategy.recompute
        self.assertEqual(recompute.enable, False)
27
        self.assertIsNone(recompute.checkpoints)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

        amp = strategy.amp
        self.assertEqual(amp.enable, False)
        self.assertAlmostEqual(amp.init_loss_scaling, 32768.0)
        self.assertEqual(amp.incr_every_n_steps, 1000)
        self.assertEqual(amp.decr_every_n_nan_or_inf, 2)
        self.assertAlmostEqual(amp.incr_ratio, 2.0)
        self.assertAlmostEqual(amp.decr_ratio, 0.8)
        self.assertEqual(amp.use_dynamic_loss_scaling, True)
        self.assertEqual(amp.custom_black_list, [])
        self.assertEqual(amp.custom_white_list, [])
        self.assertEqual(amp.custom_black_varnames, [])
        self.assertEqual(amp.use_pure_fp16, False)
        self.assertEqual(amp.use_fp16_guard, True)
        self.assertEqual(amp.use_optimizer_fp16, False)

        sharding = strategy.sharding
        self.assertEqual(sharding.enable, False)
        self.assertEqual(sharding.stage, 1)
Z
zhaoyingli 已提交
47
        self.assertEqual(sharding.degree, 8)
48 49 50
        self.assertAlmostEqual(sharding.overlap_grad_comm, False)
        self.assertAlmostEqual(sharding.bucket_size_numel, -1)
        self.assertAlmostEqual(sharding.partition_algor, "greedy_even")
51 52 53 54 55 56 57 58 59 60 61 62 63 64
        self.assertEqual(sharding.enable_tuning, False)
        self.assertEqual(sharding.tuning_range, [])

        gradient_merge = strategy.gradient_merge
        self.assertEqual(gradient_merge.enable, False)
        self.assertEqual(gradient_merge.k_steps, 1)
        self.assertEqual(gradient_merge.avg, True)

        qat = strategy.qat
        self.assertEqual(qat.enable, False)
        self.assertEqual(qat.channel_wise_abs_max, True)
        self.assertEqual(qat.weight_bits, 8)
        self.assertEqual(qat.activation_bits, 8)
        self.assertEqual(qat.not_quant_pattern, ['skip_quant'])
65
        self.assertIsNone(qat.algo)
66 67 68 69

        tuning = strategy.tuning
        self.assertEqual(tuning.enable, False)
        self.assertEqual(tuning.batch_size, 1)
70
        self.assertIsNone(tuning.dataset)
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        self.assertEqual(tuning.profile_start_step, 1)
        self.assertEqual(tuning.profile_end_step, 1)
        self.assertEqual(tuning.run_after_tuning, True)
        self.assertEqual(tuning.verbose, True)

    def test_modify_config(self):
        strategy = auto.Strategy()

        recompute = strategy.recompute
        recompute.enable = True
        recompute.checkpoints = ["x"]
        self.assertEqual(recompute.enable, True)
        self.assertEqual(recompute.checkpoints, ["x"])

        amp = strategy.amp
        amp.enable = True
        amp.init_loss_scaling = 16384.0
        amp.incr_every_n_steps = 2000
        amp.decr_every_n_nan_or_inf = 4
        amp.incr_ratio = 4.0
        amp.decr_ratio = 0.4
        amp.use_dynamic_loss_scaling = False
        amp.custom_white_list = ["x"]
        amp.custom_black_list = ["y"]
        amp.custom_black_varnames = ["z"]
        amp.use_pure_fp16 = True
        amp.use_fp16_guard = False
        amp.use_optimizer_fp16 = True
        self.assertEqual(amp.enable, True)
        self.assertAlmostEqual(amp.init_loss_scaling, 16384.0)
        self.assertEqual(amp.incr_every_n_steps, 2000)
        self.assertEqual(amp.decr_every_n_nan_or_inf, 4)
        self.assertAlmostEqual(amp.incr_ratio, 4.0)
        self.assertAlmostEqual(amp.decr_ratio, 0.4)
        self.assertEqual(amp.use_dynamic_loss_scaling, False)
        self.assertEqual(amp.custom_white_list, ["x"])
        self.assertEqual(amp.custom_black_list, ["y"])
        self.assertEqual(amp.custom_black_varnames, ["z"])
        self.assertEqual(amp.use_pure_fp16, True)
        self.assertEqual(amp.use_fp16_guard, False)
        self.assertEqual(amp.use_optimizer_fp16, True)

        sharding = strategy.sharding
        sharding.enable = True
        sharding.stage = 2
Z
zhaoyingli 已提交
116
        sharding.degree = 2
117 118 119 120 121
        sharding.segment_broadcast_MB = 64.0
        sharding.enable_tuning = True
        sharding.tuning_range = [1, 2, 3]
        self.assertEqual(sharding.enable, True)
        self.assertEqual(sharding.stage, 2)
Z
zhaoyingli 已提交
122
        self.assertEqual(sharding.degree, 2)
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        self.assertAlmostEqual(sharding.segment_broadcast_MB, 64.0)
        self.assertEqual(sharding.enable_tuning, True)
        self.assertEqual(sharding.tuning_range, [1, 2, 3])

        gradient_merge = strategy.gradient_merge
        gradient_merge.enable = True
        gradient_merge.k_steps = 4
        gradient_merge.avg = False
        self.assertEqual(gradient_merge.enable, True)
        self.assertEqual(gradient_merge.k_steps, 4)
        self.assertEqual(gradient_merge.avg, False)

    # def test_file_config(self):
    #     yaml_data = """
    #     all_ranks: false
    #     amp:
    #         custom_black_list:
    #         - y
    #         custom_black_varnames:
    #         - z
    #         custom_white_list:
    #         - x
    #         decr_every_n_nan_or_inf: 4
    #         decr_ratio: 0.4
    #         enable: false
    #         incr_every_n_steps: 2000
    #         incr_ratio: 4.0
    #         init_loss_scaling: 16384.0
    #         use_dynamic_loss_scaling: false
    #         use_fp16_guard: false
    #         use_optimizer_fp16: true
    #         use_pure_fp16: true
    #     auto_mode: semi
    #     gradient_merge:
    #         avg: false
    #         enable: false
    #         k_steps: 4
    #     gradient_scale: true
    #     qat:
    #         activation_bits: 8
    #         algo: null
    #         channel_wise_abs_max: true
    #         enable: false
    #         not_quant_pattern:
    #         - skip_quant
    #         weight_bits: 8
    #     recompute:
    #         checkpoints: null
    #         enable: false
    #         enable_tuning: false
    #     return_numpy: true
    #     seed: null
    #     sharding:
    #         enable: false
    #         enable_tuning: true
    #         segment_broadcast_MB: 64.0
Z
zhaoyingli 已提交
179
    #         degree: 8
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    #         stage: 2
    #         tuning_range: None
    #     split_data: false
    #     tuning:
    #         batch_size: 1
    #         dataset: null
    #         enable: false
    #         profile_end_step: 1
    #         profile_start_step: 1
    #         run_after_tuning: true
    #         verbose: true
    #     use_cache: true
    #     """
    #     yaml_path = "./strategy.yml"
    #     yaml_dict = yaml.load(yaml_data, Loader=yaml.Loader)
    #     with open(yaml_path, 'w') as outfile:
    #         yaml.dump(yaml_dict, outfile, default_flow_style=False)

    #     strategy = auto.Strategy(yaml_path)
    #     self.assertEqual(yaml_dict, strategy.to_dict())

    #     # Remove the created file
    #     if os.path.exists(yaml_path):
    #         os.remove(yaml_path)


if __name__ == '__main__':
    unittest.main()