common_graph_table.h 4.8 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ThreadPool.h>
#include <assert.h>
#include <pthread.h>
#include <list>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/distributed/table/accessor.h"
#include "paddle/fluid/distributed/table/common_table.h"
#include "paddle/fluid/distributed/table/graph_node.h"
#include "paddle/fluid/framework/rw_lock.h"
#include "paddle/fluid/string/string_helper.h"
namespace paddle {
namespace distributed {
class GraphShard {
 public:
  // static int bucket_low_bound;
  // static int gcd(int s, int t) {
  //   if (s % t == 0) return t;
  //   return gcd(t, s % t);
  // }
  size_t get_size();
  GraphShard() {}
  GraphShard(int shard_num) {
    this->shard_num = shard_num;
    // bucket_size = init_bucket_size(shard_num);
    // bucket.resize(bucket_size);
  }
  std::vector<Node *> &get_bucket() { return bucket; }
  std::vector<Node *> get_batch(int start, int end, int step);
  // int init_bucket_size(int shard_num) {
  //   for (int i = bucket_low_bound;; i++) {
  //     if (gcd(i, shard_num) == 1) return i;
  //   }
  //   return -1;
  // }
  std::vector<uint64_t> get_ids_by_range(int start, int end) {
    std::vector<uint64_t> res;
    for (int i = start; i < end && i < bucket.size(); i++) {
      res.push_back(bucket[i]->get_id());
    }
    return res;
  }
  GraphNode *add_graph_node(uint64_t id);
  FeatureNode *add_feature_node(uint64_t id);
  Node *find_node(uint64_t id);
  void add_neighboor(uint64_t id, uint64_t dst_id, float weight);
  // std::unordered_map<uint64_t, std::list<GraphNode *>::iterator>
  std::unordered_map<uint64_t, int> get_node_location() {
    return node_location;
  }

 private:
  std::unordered_map<uint64_t, int> node_location;
  int shard_num;
  std::vector<Node *> bucket;
};
class GraphTable : public SparseTable {
 public:
  GraphTable() {}
  virtual ~GraphTable() {}
  virtual int32_t pull_graph_list(int start, int size,
                                  std::unique_ptr<char[]> &buffer,
                                  int &actual_size, bool need_feature,
                                  int step);

  virtual int32_t random_sample_neighboors(
      uint64_t *node_ids, int sample_size,
      std::vector<std::unique_ptr<char[]>> &buffers,
      std::vector<int> &actual_sizes);

  int32_t random_sample_nodes(int sample_size, std::unique_ptr<char[]> &buffers,
                              int &actual_sizes);

  virtual int32_t get_nodes_ids_by_ranges(
      std::vector<std::pair<int, int>> ranges, std::vector<uint64_t> &res);
  virtual int32_t initialize();

  int32_t load(const std::string &path, const std::string &param);

  int32_t load_edges(const std::string &path, bool reverse);

  int32_t load_nodes(const std::string &path, std::string node_type);

  Node *find_node(uint64_t id);

  virtual int32_t pull_sparse(float *values, const uint64_t *keys, size_t num) {
    return 0;
  }
  virtual int32_t push_sparse(const uint64_t *keys, const float *values,
                              size_t num) {
    return 0;
  }
  virtual void clear() {}
  virtual int32_t flush() { return 0; }
  virtual int32_t shrink(const std::string &param) { return 0; }
  //指定保存路径
  virtual int32_t save(const std::string &path, const std::string &converter) {
    return 0;
  }
  virtual int32_t initialize_shard() { return 0; }
  virtual uint32_t get_thread_pool_index(uint64_t node_id);
  virtual std::pair<int32_t, std::string> parse_feature(std::string feat_str);

  virtual int32_t get_node_feat(const std::vector<uint64_t> &node_ids,
                                const std::vector<std::string> &feature_names,
                                std::vector<std::vector<std::string>> &res);

 protected:
  std::vector<GraphShard> shards;
  size_t shard_start, shard_end, server_num, shard_num_per_table, shard_num;
  const int task_pool_size_ = 11;
  const int random_sample_nodes_ranges = 3;

  std::vector<std::string> feat_name;
  std::vector<std::string> feat_dtype;
  std::vector<int32_t> feat_shape;
  std::unordered_map<std::string, int32_t> feat_id_map;
  std::string table_name;
  std::string table_type;

  std::vector<std::shared_ptr<::ThreadPool>> _shards_task_pool;
};
}
};