blas_impl.cu.h 66.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
18
#include "paddle/fluid/platform/dynload/cublas.h"
19
#include "paddle/phi/backends/gpu/gpu_context.h"
20
#include "paddle/phi/kernels/funcs/math_function.h"
21 22

DECLARE_bool(enable_cublas_tensor_op_math);
23
DECLARE_bool(gemm_use_half_precision_compute_type);
24

25
namespace phi {
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
namespace funcs {

template <typename T>
struct CUBlas;

template <>
struct CUBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasSgemm(args...));
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasSaxpy(args...));
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasSscal(args...));
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasScopy(args...));
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasSgemv(args...));
  }

  template <typename... ARGS>
  static void GEMM_STRIDED_BATCH(ARGS... args) {
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasSgemmStridedBatched(args...));
#else
64
    PADDLE_THROW(phi::errors::Unimplemented(
65 66 67 68 69 70 71
        "SgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
72
  static void GEMM_EX(phi::GPUContext *dev_ctx,
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
                      cublasOperation_t transa,
                      cublasOperation_t transb,
                      int m,
                      int n,
                      int k,
                      const float *alpha,
                      const void *A,
                      cudaDataType_t Atype,
                      int lda,
                      const void *B,
                      cudaDataType_t Btype,
                      int ldb,
                      const float *beta,
                      void *C,
                      cudaDataType_t Ctype,
                      int ldc) {
// Because the gcc 4.8 doesn't expand template parameter pack that
// appears in a lambda-expression, I can not use template parameter pack
// here.
#if CUDA_VERSION >= 8000
    VLOG(5) << "use_tensor_op_math: "
            << (dev_ctx->tensor_core_available() ? "True" : "False");
    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::cublasSgemmEx(handle,
                                                   transa,
                                                   transb,
                                                   m,
                                                   n,
                                                   k,
                                                   alpha,
                                                   A,
                                                   Atype,
                                                   lda,
                                                   B,
                                                   Btype,
                                                   ldb,
                                                   beta,
                                                   C,
                                                   Ctype,
                                                   ldc));
    });
#else
116
    PADDLE_THROW(phi::errors::Unimplemented(
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        "cublasSgemmEx is not supported on cuda <= 7.5"));
#endif
  }

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasStrsm(args...));
  }

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasSgetrfBatched(args...));
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasSgetriBatched(args...));
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasSmatinvBatched(args...));
  }

  template <typename... ARGS>
  static void GETRS_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasSgetrsBatched(args...));
  }

  template <typename... ARGS>
  static void TRSM_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasStrsmBatched(args...));
  }
};

template <>
struct CUBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasDgemm(args...));
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasDaxpy(args...));
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasDscal(args...));
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasDcopy(args...));
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasDgemv(args...));
  }

  template <typename... ARGS>
  static void GEMM_STRIDED_BATCH(ARGS... args) {
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasDgemmStridedBatched(args...));
#else
190
    PADDLE_THROW(phi::errors::Unimplemented(
191 192 193 194 195 196 197
        "DgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    PADDLE_THROW(
198
        phi::errors::Unimplemented("Currently there are not cublasDgemmEx."));
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  }

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasDtrsm(args...));
  }

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasDgetrfBatched(args...));
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasDgetriBatched(args...));
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasDmatinvBatched(args...));
  }

  template <typename... ARGS>
  static void GETRS_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasDgetrsBatched(args...));
  }

  template <typename... ARGS>
  static void TRSM_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasDtrsmBatched(args...));
  }
};

template <>
238 239
struct CUBlas<phi::dtype::float16> {
  using float16 = phi::dtype::float16;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

  static void GEMM(cublasHandle_t handle,
                   cublasOperation_t transa,
                   cublasOperation_t transb,
                   int m,
                   int n,
                   int k,
                   const float16 *alpha,
                   const float16 *A,
                   int lda,
                   const float16 *B,
                   int ldb,
                   const float16 *beta,
                   float16 *C,
                   int ldc) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasHgemm(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const __half *>(alpha),
        reinterpret_cast<const __half *>(A),
        lda,
        reinterpret_cast<const __half *>(B),
        ldb,
        reinterpret_cast<const __half *>(beta),
        reinterpret_cast<__half *>(C),
        ldc));
  }

  static void GEMM_STRIDED_BATCH(cublasHandle_t handle,
                                 cublasOperation_t transa,
                                 cublasOperation_t transb,
                                 int m,
                                 int n,
                                 int k,
                                 const float16 *alpha,
                                 const float16 *A,
                                 int lda,
                                 long long int strideA,  // NOLINT
                                 const float16 *B,       // NOLINT
                                 int ldb,
                                 long long int strideB,  // NOLINT
                                 const float16 *beta,
                                 float16 *C,
                                 int ldc,
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasHgemmStridedBatched(
            handle,
            transa,
            transb,
            m,
            n,
            k,
            reinterpret_cast<const __half *>(alpha),
            reinterpret_cast<const __half *>(A),
            lda,
            strideA,
            reinterpret_cast<const __half *>(B),
            ldb,
            strideB,
            reinterpret_cast<const __half *>(beta),
            reinterpret_cast<__half *>(C),
            ldc,
            strideC,
            batchCount));
#else
312
    PADDLE_THROW(phi::errors::Unimplemented(
313 314 315 316 317 318 319
        "HgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
320
  static void GEMM_EX(phi::GPUContext *dev_ctx,
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
                      cublasOperation_t transa,
                      cublasOperation_t transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      cudaDataType_t Atype,
                      int lda,
                      const void *B,
                      cudaDataType_t Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      cudaDataType_t Ctype,
                      int ldc,
                      cudaDataType_t computeType) {
#if CUDA_VERSION >= 8000
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
    bool use_tensor_op_math = dev_ctx->tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");
#endif  // CUDA_VERSION >= 9000

    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::cublasGemmEx(handle,
                                                  transa,
                                                  transb,
                                                  m,
                                                  n,
                                                  k,
                                                  alpha,
                                                  A,
                                                  Atype,
                                                  lda,
                                                  B,
                                                  Btype,
                                                  ldb,
                                                  beta,
                                                  C,
                                                  Ctype,
                                                  ldc,
                                                  computeType,
                                                  algo));
    });
#else
372
    PADDLE_THROW(phi::errors::Unimplemented(
373 374 375 376 377 378
        "cublasGemmEx is not supported on cuda <= 7.5"));
#endif
  }
};

template <>
379
struct CUBlas<phi::dtype::complex<float>> {
380 381 382 383
  static void GEMV(cublasHandle_t handle,
                   cublasOperation_t transa,
                   int m,
                   int n,
384 385
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
386
                   int lda,
387
                   const phi::dtype::complex<float> *B,
388
                   int ldb,
389 390
                   const phi::dtype::complex<float> *beta,
                   phi::dtype::complex<float> *C,
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
                   int ldc) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasCgemv(
        handle,
        transa,
        m,
        n,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(A),
        lda,
        reinterpret_cast<const cuFloatComplex *>(B),
        ldb,
        reinterpret_cast<const cuFloatComplex *>(beta),
        reinterpret_cast<cuFloatComplex *>(C),
        ldc));
  }

  static void AXPY(cublasHandle_t handle,
                   int n,
409 410
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *X,
411
                   const int incX,
412
                   phi::dtype::complex<float> *Y,
413 414 415 416 417 418 419 420 421 422 423
                   const int incY) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasCaxpy(
        handle,
        n,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(X),
        incX,
        reinterpret_cast<cuFloatComplex *>(Y),
        incY));
  }

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
  static void GEMM_STRIDED_BATCH(cublasHandle_t handle,
                                 cublasOperation_t transa,
                                 cublasOperation_t transb,
                                 int m,
                                 int n,
                                 int k,
                                 const phi::dtype::complex<float> *alpha,
                                 const phi::dtype::complex<float> *A,
                                 int lda,
                                 long long int strideA,                // NOLINT
                                 const phi::dtype::complex<float> *B,  // NOLINT
                                 int ldb,
                                 long long int strideB,  // NOLINT
                                 const phi::dtype::complex<float> *beta,
                                 phi::dtype::complex<float> *C,
                                 int ldc,
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasCgemmStridedBatched(
            handle,
            transa,
            transb,
            m,
            n,
            k,
            reinterpret_cast<const cuFloatComplex *>(alpha),
            reinterpret_cast<const cuFloatComplex *>(A),
            lda,
            strideA,
            reinterpret_cast<const cuFloatComplex *>(B),
            ldb,
            strideB,
            reinterpret_cast<const cuFloatComplex *>(beta),
            reinterpret_cast<cuFloatComplex *>(C),
            ldc,
            strideC,
            batchCount));
#else
464
    PADDLE_THROW(phi::errors::Unimplemented(
465 466 467 468 469 470 471 472 473 474
        "CgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  static void GEMM(cublasHandle_t handle,
                   cublasOperation_t transa,
                   cublasOperation_t transb,
                   int m,
                   int n,
                   int k,
475 476
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
477
                   int lda,
478
                   const phi::dtype::complex<float> *B,
479
                   int ldb,
480 481
                   const phi::dtype::complex<float> *beta,
                   phi::dtype::complex<float> *C,
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
                   int ldc) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasCgemm(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(A),
        lda,
        reinterpret_cast<const cuFloatComplex *>(B),
        ldb,
        reinterpret_cast<const cuFloatComplex *>(beta),
        reinterpret_cast<cuFloatComplex *>(C),
        ldc));
  }

  static void TRSM(cublasHandle_t handle,
                   cublasSideMode_t side,
                   cublasFillMode_t uplo,
                   cublasOperation_t transa,
                   cublasDiagType_t diag,
                   int m,
                   int n,
507 508
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
509
                   int lda,
510
                   phi::dtype::complex<float> *B,
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
                   int ldb) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasCtrsm(
        handle,
        side,
        uplo,
        transa,
        diag,
        m,
        n,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(A),
        lda,
        reinterpret_cast<cuFloatComplex *>(B),
        ldb));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
530
  static void GEMM_EX(phi::GPUContext *dev_ctx,
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
                      cublasOperation_t transa,
                      cublasOperation_t transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      cudaDataType_t Atype,
                      int lda,
                      const void *B,
                      cudaDataType_t Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      cudaDataType_t Ctype,
                      int ldc,
                      cudaDataType_t computeType) {
#if CUDA_VERSION >= 8000
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
    bool use_tensor_op_math = dev_ctx->tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");
#endif  // CUDA_VERSION >= 9000

    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::cublasGemmEx(handle,
                                                  transa,
                                                  transb,
                                                  m,
                                                  n,
                                                  k,
                                                  alpha,
                                                  A,
                                                  Atype,
                                                  lda,
                                                  B,
                                                  Btype,
                                                  ldb,
                                                  beta,
                                                  C,
                                                  Ctype,
                                                  ldc,
                                                  computeType,
                                                  algo));
    });
#else
582
    PADDLE_THROW(phi::errors::Unimplemented(
583 584 585 586 587 588 589 590 591 592 593
        "cublasGemmEx is not supported on cuda <= 7.5"));
#endif
  }

  static void TRSM_BATCH(cublasHandle_t handle,
                         cublasSideMode_t side,
                         cublasFillMode_t uplo,
                         cublasOperation_t transa,
                         cublasDiagType_t diag,
                         int m,
                         int n,
594 595
                         const phi::dtype::complex<float> *alpha,
                         const phi::dtype::complex<float> **A,
596
                         int lda,
597
                         phi::dtype::complex<float> **B,
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
                         int ldb,
                         int batch_size) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasCtrsmBatched(
        handle,
        side,
        uplo,
        transa,
        diag,
        m,
        n,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex **>(A),
        lda,
        reinterpret_cast<cuFloatComplex **>(B),
        ldb,
        batch_size));
  }
};

template <>
618
struct CUBlas<phi::dtype::complex<double>> {
619 620 621 622
  static void GEMV(cublasHandle_t handle,
                   cublasOperation_t transa,
                   int m,
                   int n,
623 624
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
625
                   int lda,
626
                   const phi::dtype::complex<double> *B,
627
                   int ldb,
628 629
                   const phi::dtype::complex<double> *beta,
                   phi::dtype::complex<double> *C,
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
                   int ldc) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasZgemv(
        handle,
        transa,
        m,
        n,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(A),
        lda,
        reinterpret_cast<const cuDoubleComplex *>(B),
        ldb,
        reinterpret_cast<const cuDoubleComplex *>(beta),
        reinterpret_cast<cuDoubleComplex *>(C),
        ldc));
  }

  static void AXPY(cublasHandle_t handle,
                   int n,
648 649
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *X,
650
                   const int incX,
651
                   phi::dtype::complex<double> *Y,
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
                   const int incY) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasZaxpy(
        handle,
        n,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(X),
        incX,
        reinterpret_cast<cuDoubleComplex *>(Y),
        incY));
  }

  static void GEMM_STRIDED_BATCH(
      cublasHandle_t handle,
      cublasOperation_t transa,
      cublasOperation_t transb,
      int m,
      int n,
      int k,
670 671
      const phi::dtype::complex<double> *alpha,
      const phi::dtype::complex<double> *A,
672
      int lda,
673 674
      long long int strideA,                 // NOLINT
      const phi::dtype::complex<double> *B,  // NOLINT
675 676
      int ldb,
      long long int strideB,  // NOLINT
677 678
      const phi::dtype::complex<double> *beta,
      phi::dtype::complex<double> *C,
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
      int ldc,
      long long int strideC,  // NOLINT
      int batchCount) {
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasZgemmStridedBatched(
            handle,
            transa,
            transb,
            m,
            n,
            k,
            reinterpret_cast<const cuDoubleComplex *>(alpha),
            reinterpret_cast<const cuDoubleComplex *>(A),
            lda,
            strideA,
            reinterpret_cast<const cuDoubleComplex *>(B),
            ldb,
            strideB,
            reinterpret_cast<const cuDoubleComplex *>(beta),
            reinterpret_cast<cuDoubleComplex *>(C),
            ldc,
            strideC,
            batchCount));
#else
704
    PADDLE_THROW(phi::errors::Unimplemented(
705 706 707 708 709 710 711 712 713 714
        "CgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  static void GEMM(cublasHandle_t handle,
                   cublasOperation_t transa,
                   cublasOperation_t transb,
                   int m,
                   int n,
                   int k,
715 716
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
717
                   int lda,
718
                   const phi::dtype::complex<double> *B,
719
                   int ldb,
720 721
                   const phi::dtype::complex<double> *beta,
                   phi::dtype::complex<double> *C,
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
                   int ldc) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasZgemm(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(A),
        lda,
        reinterpret_cast<const cuDoubleComplex *>(B),
        ldb,
        reinterpret_cast<const cuDoubleComplex *>(beta),
        reinterpret_cast<cuDoubleComplex *>(C),
        ldc));
  }

  static void TRSM(cublasHandle_t handle,
                   cublasSideMode_t side,
                   cublasFillMode_t uplo,
                   cublasOperation_t transa,
                   cublasDiagType_t diag,
                   int m,
                   int n,
747 748
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
749
                   int lda,
750
                   phi::dtype::complex<double> *B,
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
                   int ldb) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasZtrsm(
        handle,
        side,
        uplo,
        transa,
        diag,
        m,
        n,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(A),
        lda,
        reinterpret_cast<cuDoubleComplex *>(B),
        ldb));
  }

  static void TRSM_BATCH(cublasHandle_t handle,
                         cublasSideMode_t side,
                         cublasFillMode_t uplo,
                         cublasOperation_t transa,
                         cublasDiagType_t diag,
                         int m,
                         int n,
774 775
                         const phi::dtype::complex<double> *alpha,
                         const phi::dtype::complex<double> **A,
776
                         int lda,
777
                         phi::dtype::complex<double> **B,
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
                         int ldb,
                         int batch_size) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cublasZtrsmBatched(
        handle,
        side,
        uplo,
        transa,
        diag,
        m,
        n,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex **>(A),
        lda,
        reinterpret_cast<cuDoubleComplex **>(B),
        ldb,
        batch_size));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
799
  static void GEMM_EX(phi::GPUContext *dev_ctx,
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
                      cublasOperation_t transa,
                      cublasOperation_t transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      cudaDataType_t Atype,
                      int lda,
                      const void *B,
                      cudaDataType_t Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      cudaDataType_t Ctype,
                      int ldc,
                      cudaDataType_t computeType) {
#if CUDA_VERSION >= 8000
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
    bool use_tensor_op_math = dev_ctx->tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");
#endif  // CUDA_VERSION >= 9000

    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::cublasGemmEx(handle,
                                                  transa,
                                                  transb,
                                                  m,
                                                  n,
                                                  k,
                                                  alpha,
                                                  A,
                                                  Atype,
                                                  lda,
                                                  B,
                                                  Btype,
                                                  ldb,
                                                  beta,
                                                  C,
                                                  Ctype,
                                                  ldc,
                                                  computeType,
                                                  algo));
    });
#else
851
    PADDLE_THROW(phi::errors::Unimplemented(
852 853 854 855 856 857 858
        "cublasGemmEx is not supported on cuda <= 7.5"));
#endif
  }
};

template <>
template <typename T>
859 860 861 862 863 864 865 866 867 868
void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                 CBLAS_TRANSPOSE transB,
                                 int M,
                                 int N,
                                 int K,
                                 T alpha,
                                 const T *A,
                                 const T *B,
                                 T beta,
                                 T *C) const {
869 870 871 872 873 874 875 876 877 878 879
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

#if CUDA_VERSION >= 8000
  if (FLAGS_enable_cublas_tensor_op_math && std::is_same<T, float>::value) {
880
    auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
    CUBlas<T>::GEMM_EX(&cuda_ctx,
                       cuTransB,
                       cuTransA,
                       N,
                       M,
                       K,
                       &alpha,
                       B,
                       CUDA_R_32F,
                       ldb,
                       A,
                       CUDA_R_32F,
                       lda,
                       &beta,
                       C,
                       CUDA_R_32F,
                       N);
  } else {
#endif  // CUDA_VERSION >= 8000
    context_.CublasCall([&](cublasHandle_t handle) {
      CUBlas<T>::GEMM(handle,
                      cuTransB,
                      cuTransA,
                      N,
                      M,
                      K,
                      &alpha,
                      B,
                      ldb,
                      A,
                      lda,
                      &beta,
                      C,
                      N);
    });

#if CUDA_VERSION >= 8000
  }
#endif  // CUDA_VERSION >= 8000
}

template <>
template <>
924 925 926 927 928 929 930 931 932 933
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        const phi::dtype::float16 *B,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C) const {
934 935 936 937 938 939 940 941 942 943 944 945 946
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
947
      phi::errors::InvalidArgument(
948 949 950 951 952 953 954 955 956 957 958 959
          "cublas fp16 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

#if CUDA_VERSION >= 8000
  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
960 961
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::float16>::GEMM_EX(&cuda_ctx,
962 963 964 965 966 967
                                       cuTransB,
                                       cuTransA,
                                       N,
                                       M,
                                       K,
                                       &h_alpha,
968 969
                                       B,
                                       CUDA_R_16F,
970
                                       ldb,
971 972
                                       A,
                                       CUDA_R_16F,
973 974
                                       lda,
                                       &h_beta,
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
                                       C,
                                       CUDA_R_16F,
                                       N,
                                       CUDA_R_32F);
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<phi::dtype::float16>::GEMM(handle,
                                      cuTransB,
                                      cuTransA,
                                      N,
                                      M,
                                      K,
                                      &h_alpha,
                                      h_B,
                                      ldb,
                                      h_A,
                                      lda,
                                      &h_beta,
                                      h_C,
                                      N);
997 998 999 1000 1001 1002
  });
#endif  // CUDA_VERSION >= 8000
}

template <>
template <>
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::bfloat16 alpha,
                                        const phi::dtype::bfloat16 *A,
                                        const phi::dtype::bfloat16 *B,
                                        phi::dtype::bfloat16 beta,
                                        phi::dtype::bfloat16 *C) const {
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
#if CUDA_VERSION >= 11000
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      80,
1026
      phi::errors::InvalidArgument(
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
          "cublas bf16 gemm requires GPU compute capability >= 80,"
          "but received %d",
          context_.GetComputeCapability()));

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

  cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
  bool use_tensor_op_math = context_.tensor_core_available();
  if (use_tensor_op_math) {
    algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
  }
  VLOG(5) << "use_tensor_op_math: " << (use_tensor_op_math ? "True" : "False");

  context_.TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasGemmEx(handle,
                                                cuTransB,
                                                cuTransA,
                                                N,
                                                M,
                                                K,
                                                &h_alpha,
                                                B,
                                                CUDA_R_16BF,
                                                ldb,
                                                A,
                                                CUDA_R_16BF,
                                                lda,
                                                &h_beta,
                                                C,
                                                CUDA_R_16BF,
                                                N,
                                                CUDA_R_32F,
                                                algo));
  });
#else
  // raise error
1065
  PADDLE_THROW(phi::errors::Unimplemented(
1066 1067 1068 1069 1070 1071 1072
      "cublasGemmEx with bfloat16 is not supported on cuda <= 11"));

#endif  // CUDA_VERSION >= 11000
}

template <>
template <>
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::complex<float> alpha,
                                        const phi::dtype::complex<float> *A,
                                        const phi::dtype::complex<float> *B,
                                        phi::dtype::complex<float> beta,
                                        phi::dtype::complex<float> *C) const {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
1096
      phi::errors::InvalidArgument(
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
          "cublas complex64 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  thrust::complex<float> c_alpha =
      thrust::complex<float>(alpha.real, alpha.imag);
  thrust::complex<float> c_beta = thrust::complex<float>(beta.real, beta.imag);

#if CUDA_VERSION >= 8000
  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
1110 1111
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::complex<float>>::GEMM_EX(&cuda_ctx,
1112 1113 1114 1115 1116 1117
                                              cuTransB,
                                              cuTransA,
                                              N,
                                              M,
                                              K,
                                              &c_alpha,
1118 1119
                                              B,
                                              CUDA_C_32F,
1120
                                              ldb,
1121 1122
                                              A,
                                              CUDA_C_32F,
1123 1124
                                              lda,
                                              &c_beta,
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
                                              C,
                                              CUDA_C_32F,
                                              N,
                                              CUDA_C_32F);
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<phi::dtype::complex<float>>::GEMM(handle,
                                             cuTransB,
                                             cuTransA,
                                             N,
                                             M,
                                             K,
                                             &c_alpha,
                                             h_B,
                                             ldb,
                                             h_A,
                                             lda,
                                             &c_beta,
                                             h_C,
                                             N);
1147 1148 1149 1150 1151 1152
  });
#endif  // CUDA_VERSION >= 8000
}

template <>
template <>
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::complex<double> alpha,
                                        const phi::dtype::complex<double> *A,
                                        const phi::dtype::complex<double> *B,
                                        phi::dtype::complex<double> beta,
                                        phi::dtype::complex<double> *C) const {
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
1176
      phi::errors::InvalidArgument(
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
          "cublas complex128 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  thrust::complex<double> c_alpha =
      thrust::complex<double>(alpha.real, alpha.imag);
  thrust::complex<double> c_beta =
      thrust::complex<double>(beta.real, beta.imag);

#if CUDA_VERSION >= 8000
  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
1191
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
1192
  CUBlas<phi::dtype::complex<double>>::GEMM_EX(&cuda_ctx,
1193 1194 1195 1196 1197 1198
                                               cuTransB,
                                               cuTransA,
                                               N,
                                               M,
                                               K,
                                               &c_alpha,
1199 1200
                                               B,
                                               CUDA_C_64F,
1201
                                               ldb,
1202 1203
                                               A,
                                               CUDA_C_64F,
1204 1205
                                               lda,
                                               &c_beta,
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
                                               C,
                                               CUDA_C_64F,
                                               N,
                                               CUDA_C_64F);
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<phi::dtype::complex<double>>::GEMM(handle,
                                              cuTransB,
                                              cuTransA,
                                              N,
                                              M,
                                              K,
                                              &c_alpha,
                                              h_B,
                                              ldb,
                                              h_A,
                                              lda,
                                              &c_beta,
                                              h_C,
                                              N);
1228 1229 1230 1231 1232 1233
  });
#endif  // CUDA_VERSION >= 8000
}

template <>
template <typename T>
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
void Blas<phi::GPUContext>::GEMM(bool transA,
                                 bool transB,
                                 int M,
                                 int N,
                                 int K,
                                 T alpha,
                                 const T *A,
                                 int lda,
                                 const T *B,
                                 int ldb,
                                 T beta,
                                 T *C,
                                 int ldc) const {
1247 1248 1249 1250 1251 1252 1253
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
  cublasOperation_t cuTransB = transB ? CUBLAS_OP_T : CUBLAS_OP_N;

#if CUDA_VERSION >= 8000
  if (FLAGS_enable_cublas_tensor_op_math && std::is_same<T, float>::value) {
1254
    auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
    CUBlas<T>::GEMM_EX(&cuda_ctx,
                       cuTransB,
                       cuTransA,
                       N,
                       M,
                       K,
                       &alpha,
                       B,
                       CUDA_R_32F,
                       ldb,
                       A,
                       CUDA_R_32F,
                       lda,
                       &beta,
                       C,
                       CUDA_R_32F,
                       ldc);
  } else {
#endif  // CUDA_VERSION >= 8000

    context_.CublasCall([&](cublasHandle_t handle) {
      CUBlas<T>::GEMM(handle,
                      cuTransB,
                      cuTransA,
                      N,
                      M,
                      K,
                      &alpha,
                      B,
                      ldb,
                      A,
                      lda,
                      &beta,
                      C,
                      ldc);
    });

#if CUDA_VERSION >= 8000
  }
#endif  // CUDA_VERSION >= 8000
}

template <>
template <>
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
inline void Blas<phi::GPUContext>::GEMM(bool transA,
                                        bool transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        int lda,
                                        const phi::dtype::float16 *B,
                                        int ldb,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C,
                                        int ldc) const {
1312 1313 1314 1315 1316 1317
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
  cublasOperation_t cuTransB = transB ? CUBLAS_OP_T : CUBLAS_OP_N;

  context_.CublasCall([&](cublasHandle_t handle) {
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
    CUBlas<phi::dtype::float16>::GEMM(handle,
                                      cuTransB,
                                      cuTransA,
                                      N,
                                      M,
                                      K,
                                      &alpha,
                                      B,
                                      ldb,
                                      A,
                                      lda,
                                      &beta,
                                      C,
                                      ldc);
1332 1333 1334 1335 1336
  });
}

template <>
template <typename T>
1337
void Blas<phi::GPUContext>::AXPY(int n, T alpha, const T *x, T *y) const {
1338 1339 1340 1341 1342 1343 1344
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::AXPY(handle, n, &alpha, x, 1, y, 1);
  });
}

template <>
template <typename T>
1345
void Blas<phi::GPUContext>::SCAL(int n, const T alpha, T *x) const {
1346 1347 1348 1349 1350 1351
  context_.CublasCall(
      [&](cublasHandle_t handle) { CUBlas<T>::SCAL(handle, n, &alpha, x, 1); });
}

template <>
template <typename T>
1352
void Blas<phi::GPUContext>::VCOPY(int n, const T *x, T *y) const {
1353 1354 1355 1356 1357 1358
  context_.CublasCall(
      [&](cublasHandle_t handle) { CUBlas<T>::VCOPY(handle, n, x, 1, y, 1); });
}

template <>
template <typename T>
1359 1360 1361 1362 1363 1364 1365
void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                 int M,
                                 int N,
                                 T alpha,
                                 const T *A,
                                 const T *B,
                                 T beta,
1366 1367
                                 T *C) const {
  cublasOperation_t cuTransA = !trans_a ? CUBLAS_OP_T : CUBLAS_OP_N;
1368

1369 1370 1371 1372
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::GEMV(handle, cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1);
  });
}
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
template <>
template <>
inline void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                        int M,
                                        int N,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        const phi::dtype::float16 *B,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C) const {
  // Because cublas doesn't support half gemv, we use cublasHgemm to achieve it.
  if (trans_a) {
    this->template GEMM<phi::dtype::float16>(
        CblasNoTrans, CblasNoTrans, 1, N, M, alpha, B, A, beta, C);
  } else {
    this->template GEMM<phi::dtype::float16>(
        CblasNoTrans, CblasNoTrans, M, 1, N, alpha, A, B, beta, C);
  }
}
1393

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
template <>
template <>
inline void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                        int M,
                                        int N,
                                        phi::dtype::bfloat16 alpha,
                                        const phi::dtype::bfloat16 *A,
                                        const phi::dtype::bfloat16 *B,
                                        phi::dtype::bfloat16 beta,
                                        phi::dtype::bfloat16 *C) const {
  // Because cublas doesn't support bfloat gemv, we use cublasHgemm to achieve
  // it.
  if (trans_a) {
    this->template GEMM<phi::dtype::bfloat16>(
        CblasNoTrans, CblasNoTrans, 1, N, M, alpha, B, A, beta, C);
  } else {
    this->template GEMM<phi::dtype::bfloat16>(
        CblasNoTrans, CblasNoTrans, M, 1, N, alpha, A, B, beta, C);
1412 1413 1414 1415 1416
  }
}

template <>
template <typename T>
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T *A,
                                        const T *B,
                                        T beta,
                                        T *C,
                                        int batchCount,
                                        int64_t strideA,
                                        int64_t strideB) const {
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int64_t strideC = M * N;

#if CUDA_VERSION >= 9010
  if ((FLAGS_enable_cublas_tensor_op_math && (std::is_same<T, float>::value)) ||
1443
      std::is_same<T, phi::dtype::float16>::value) {
1444 1445 1446 1447 1448 1449 1450
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
    bool use_tensor_op_math = context_.tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");
1451 1452
    VLOG(4) << "use_half_precision_compute_type: "
            << FLAGS_gemm_use_half_precision_compute_type;
1453 1454

    auto fp = std::is_same<T, float>::value ? CUDA_R_32F : CUDA_R_16F;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
    cudaDataType_t compute_type = CUDA_R_32F;

    float h_alpha = static_cast<float>(alpha);
    float h_beta = static_cast<float>(beta);
    void *a = static_cast<void *>(&h_alpha);
    void *b = static_cast<void *>(&h_beta);
    // set ComputeType as CUDA_R_32F for fp16, for better accuracy
    if (FLAGS_gemm_use_half_precision_compute_type == true &&
        std::is_same<T, phi::dtype::float16>::value) {
      a = static_cast<void *>(&alpha);
      b = static_cast<void *>(&beta);
      compute_type = CUDA_R_16F;
    }

1469 1470 1471 1472 1473 1474 1475 1476
    context_.TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::cublasGemmStridedBatchedEx(handle,
                                                                cuTransB,
                                                                cuTransA,
                                                                N,
                                                                M,
                                                                K,
1477
                                                                a,
1478 1479 1480 1481 1482 1483 1484 1485
                                                                B,
                                                                fp,
                                                                ldb,
                                                                strideB,
                                                                A,
                                                                fp,
                                                                lda,
                                                                strideA,
1486
                                                                b,
1487 1488 1489 1490 1491
                                                                C,
                                                                fp,
                                                                ldc,
                                                                strideC,
                                                                batchCount,
1492
                                                                compute_type,
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
                                                                algo));
    });
  } else {
#endif  // CUDA_VERSION >= 9010

    context_.CublasCall([&](cublasHandle_t handle) {
      CUBlas<T>::GEMM_STRIDED_BATCH(handle,
                                    cuTransB,
                                    cuTransA,
                                    N,
                                    M,
                                    K,
                                    &alpha,
                                    B,
                                    ldb,
                                    strideB,
                                    A,
                                    lda,
                                    strideA,
                                    &beta,
                                    C,
                                    ldc,
                                    strideC,
                                    batchCount);
    });

#if CUDA_VERSION >= 9010
  }
#endif  // CUDA_VERSION >= 9010
}

template <>
template <>
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::bfloat16 alpha,
                                               const phi::dtype::bfloat16 *A,
                                               const phi::dtype::bfloat16 *B,
                                               phi::dtype::bfloat16 beta,
                                               phi::dtype::bfloat16 *C,
                                               int batchCount,
                                               int64_t strideA,
                                               int64_t strideB) const {
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
#if CUDA_VERSION >= 11000
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int64_t strideC = M * N;

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

  cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
  bool use_tensor_op_math = context_.tensor_core_available();
  if (use_tensor_op_math) {
    algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
  }
  VLOG(5) << "use_tensor_op_math: " << (use_tensor_op_math ? "True" : "False");

  context_.TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cublasGemmStridedBatchedEx(
            handle,
            cuTransB,
            cuTransA,
            N,
            M,
            K,
            &h_alpha,
            B,
            CUDA_R_16BF,
            ldb,
            strideB,
            A,
            CUDA_R_16BF,
            lda,
            strideA,
            &h_beta,
            C,
            CUDA_R_16BF,
            ldc,
            strideC,
            batchCount,
            CUBLAS_COMPUTE_32F,
            algo));
  });
#else
  // raise error
1590
  PADDLE_THROW(phi::errors::Unimplemented(
1591 1592 1593 1594 1595 1596 1597
      "cublasGemmStridedBatchedEx with bfloat16 is not supported on cuda <= "
      "11"));
#endif  // CUDA_VERSION >= 11000
}

template <>
template <typename T>
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T **A,
                                        const T **B,
                                        T beta,
                                        T **C,
                                        int batchCount) const {
1609 1610 1611 1612 1613 1614 1615 1616
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<T>(
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <>
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::float16 alpha,
                                               const phi::dtype::float16 **A,
                                               const phi::dtype::float16 **B,
                                               phi::dtype::float16 beta,
                                               phi::dtype::float16 **C,
                                               int batchCount) const {
1628
  for (int k = 0; k < batchCount; ++k) {
1629
    this->template GEMM<phi::dtype::float16>(
1630 1631 1632 1633 1634 1635
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <>
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::bfloat16 alpha,
                                               const phi::dtype::bfloat16 **A,
                                               const phi::dtype::bfloat16 **B,
                                               phi::dtype::bfloat16 beta,
                                               phi::dtype::bfloat16 **C,
                                               int batchCount) const {
1647
  for (int k = 0; k < batchCount; ++k) {
1648
    this->template GEMM<phi::dtype::bfloat16>(
1649 1650 1651 1652 1653 1654
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <typename T>
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
void Blas<phi::GPUContext>::TRSM(CBLAS_SIDE side,
                                 CBLAS_UPLO uplo,
                                 CBLAS_TRANSPOSE transA,
                                 CBLAS_DIAG diag,
                                 int M,
                                 int N,
                                 T alpha,
                                 const T *A,
                                 int lda,
                                 T *B,
                                 int ldb) const {
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
  // solve row major `op ( A ) X = α B` by taking it as `X' op ( A' )  =  α B'`
  // where ' stands for transpose
  cublasSideMode_t cuSide =
      (side == CblasLeft) ? CUBLAS_SIDE_RIGHT : CUBLAS_SIDE_LEFT;
  cublasFillMode_t cuUplo =
      (uplo == CblasLower) ? CUBLAS_FILL_MODE_UPPER : CUBLAS_FILL_MODE_LOWER;
  // use CUBLAS_OP_C (conjugate transpose) for complex
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasDiagType_t cuDiag =
      (diag == CblasUnit) ? CUBLAS_DIAG_UNIT : CUBLAS_DIAG_NON_UNIT;

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::TRSM(
        handle, cuSide, cuUplo, cuTransA, cuDiag, N, M, &alpha, A, lda, B, ldb);
  });
}

template <>
template <typename T>
1686
void Blas<phi::GPUContext>::BatchedGETRF(
1687 1688 1689 1690 1691 1692 1693 1694
    int n, T **a, int *ipiv, int *info, int batch_size) const {
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::GETRF_BATCH(handle, n, a, n, ipiv, info, batch_size);
  });
}

template <>
template <typename T>
1695 1696 1697 1698 1699 1700
void Blas<phi::GPUContext>::BatchedGETRI(int n,
                                         const T **a,
                                         const int *ipiv,
                                         T **a_inv,
                                         int *info,
                                         int batch_size) const {
1701 1702 1703
  PADDLE_ENFORCE_NE(
      a_inv,
      a,
1704
      phi::errors::InvalidArgument(
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
          "cuBLAS fuction 'cublas<S/D>getrfBatched' cannot be executed "
          "in-place. The memory space of output matrix (address: %p) cannot "
          "overlap memory space of input matrix (address: %p).",
          a_inv,
          a));
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::GETRI_BATCH(handle, n, a, n, ipiv, a_inv, n, info, batch_size);
  });
}

template <>
template <typename T>
1717
void Blas<phi::GPUContext>::BatchedMatInv(
1718 1719 1720 1721 1722 1723 1724 1725
    int n, const T **a, T **a_inv, int *info, int batch_size) const {
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::MATINV_BATCH(handle, n, a, n, a_inv, n, info, batch_size);
  });
}

template <>
template <typename T>
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
void Blas<phi::GPUContext>::BatchedGETRS(CBLAS_TRANSPOSE trans,
                                         int n,
                                         int nrhs,
                                         const T **a,
                                         int lda,
                                         int *ipiv,
                                         T **b,
                                         int ldb,
                                         int *info,
                                         int batch_size) const {
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
  // use CUBLAS_OP_C (conjugate transpose) for complex
  cublasOperation_t cuTrans =
      (trans == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::GETRS_BATCH(
        handle, cuTrans, n, nrhs, a, lda, ipiv, b, ldb, info, batch_size);
  });
}

template <>
template <typename T>
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
void Blas<phi::GPUContext>::BatchedTRSM(CBLAS_SIDE side,
                                        CBLAS_UPLO uplo,
                                        CBLAS_TRANSPOSE transA,
                                        CBLAS_DIAG diag,
                                        int M,
                                        int N,
                                        T alpha,
                                        const T **A,
                                        int lda,
                                        T **B,
                                        int ldb,
                                        int batch_size) const {
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
  // solve row major `op ( A ) X = α B` by taking it as `X' op ( A' )  =  α B'`
  // where ' stands for transpose
  cublasSideMode_t cuSide =
      (side == CblasLeft) ? CUBLAS_SIDE_RIGHT : CUBLAS_SIDE_LEFT;
  cublasFillMode_t cuUplo =
      (uplo == CblasLower) ? CUBLAS_FILL_MODE_UPPER : CUBLAS_FILL_MODE_LOWER;
  // use CUBLAS_OP_C (conjugate transpose) for complex
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasDiagType_t cuDiag =
      (diag == CblasUnit) ? CUBLAS_DIAG_UNIT : CUBLAS_DIAG_NON_UNIT;

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::TRSM_BATCH(handle,
                          cuSide,
                          cuUplo,
                          cuTransA,
                          cuDiag,
                          N,
                          M,
                          &alpha,
                          A,
                          lda,
                          B,
                          ldb,
                          batch_size);
  });
}

}  // namespace funcs
1789
}  // namespace phi