test_trt_convert_hard_swish.py 4.3 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
from functools import partial
17
from typing import Any, Dict, List
18 19 20 21 22 23

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer
24 25 26 27 28 29 30


class TrtConvertHardSwishTest(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        inputs = program_config.inputs
        weights = program_config.weights
        attrs = [
31
            program_config.ops[i].attrs for i in range(len(program_config.ops))
32 33 34 35 36 37 38 39 40
        ]

        if attrs[0]['threshold'] <= 0 or attrs[0]['scale'] <= 0:
            return False

        return True

    def sample_program_configs(self):
        def generate_input1(attrs: List[Dict[str, Any]]):
41
            return np.ones([1, 3, 32, 32]).astype(np.float32)
42

43 44 45
        for threshold in [6.0]:
            for scale in [6.0]:
                for offset in [3.0]:
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
                    dics = [
                        {
                            "threshold": threshold,
                            "scale": scale,
                            "offset": offset,
                        }
                    ]

                    ops_config = [
                        {
                            "op_type": "hard_swish",
                            "op_inputs": {"X": ["input_data"]},
                            "op_outputs": {"Out": ["hard_swish_output_data"]},
                            "op_attrs": dics[0],
                        }
                    ]
62 63 64 65 66 67
                    ops = self.generate_op_config(ops_config)

                    program_config = ProgramConfig(
                        ops=ops,
                        weights={},
                        inputs={
68 69 70
                            "input_data": TensorConfig(
                                data_gen=partial(generate_input1, dics)
                            )
71
                        },
72 73
                        outputs=["hard_swish_output_data"],
                    )
74 75 76 77

                    yield program_config

    def sample_predictor_configs(
78 79
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
80
        def generate_dynamic_shape(attrs):
81 82 83
            self.dynamic_shape.min_input_shape = {"input_data": [1, 3, 16, 16]}
            self.dynamic_shape.max_input_shape = {"input_data": [2, 3, 32, 32]}
            self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 32, 32]}
84 85 86 87 88 89 90 91 92 93

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(attrs, dynamic_shape):
            return 1, 2

        attrs = [
94
            program_config.ops[i].attrs for i in range(len(program_config.ops))
95 96 97 98 99 100
        ]

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
101 102
            attrs, False
        ), 1e-5
103 104
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
105 106
            attrs, False
        ), (1e-3, 1e-3)
107 108 109 110

        # for dynamic_shape
        generate_dynamic_shape(attrs)
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
111
        yield self.create_inference_config(), generate_trt_nodes_num(
112 113
            attrs, True
        ), 1e-5
114 115
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
116 117
            attrs, True
        ), (1e-3, 1e-3)
118 119 120 121 122 123 124

    def test(self):
        self.run_test()


if __name__ == "__main__":
    unittest.main()