test_trt_convert_arg_max.py 5.3 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from functools import partial
from typing import List

19 20 21 22 23 24
import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

class TrtConvertArgMaxTest(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        input_shape = program_config.inputs["arg_max_input"].shape
        axis = program_config.ops[0].attrs["axis"]
        if axis < 0:
            axis += len(input_shape)
        if len(input_shape) <= axis or axis == 0:
            return False
        return True

    def sample_program_configs(self):
        def generate_input(rank, batch):
            dims = [batch]
            for i in range(rank - 1):
                dims.append((i + 1) * 8)
            size = np.prod(dims)
            return (np.arange(size) % 10 - 5).astype("float32").reshape(dims)

        for rank in [3, 4]:
            for batch in [1, 4]:
                for axis in [-1, 0, 1, 2, 3]:
                    for keepdims in [True, False]:
48
                        self.rank = rank
49 50
                        flatten = False
                        dtype = 2
51 52 53 54 55 56 57 58 59 60 61
                        ops_config = [
                            {
                                "op_type": "arg_max",
                                "op_inputs": {"X": ["arg_max_input"]},
                                "op_outputs": {"Out": ["arg_max_out"]},
                                "op_attrs": {
                                    "axis": axis,
                                    "keepdims": keepdims,
                                    "flatten": flatten,
                                    "dtype": dtype,
                                },
62
                                "outputs_dtype": {"arg_max_out": np.int32},
63
                            }
64
                        ]
65 66 67 68 69
                        ops = self.generate_op_config(ops_config)
                        program_config = ProgramConfig(
                            ops=ops,
                            weights={},
                            inputs={
70 71 72 73 74
                                "arg_max_input": TensorConfig(
                                    data_gen=partial(
                                        generate_input, rank, batch
                                    )
                                )
75
                            },
76 77
                            outputs=["arg_max_out"],
                        )
78 79 80
                        yield program_config

    def sample_predictor_configs(
81 82
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        def generate_dynamic_shape(attrs):
            if self.rank == 3:
                self.dynamic_shape.min_input_shape = {
                    "arg_max_input": [1, 8, 16]
                }
                self.dynamic_shape.max_input_shape = {
                    "arg_max_input": [4, 8, 16]
                }
                self.dynamic_shape.opt_input_shape = {
                    "arg_max_input": [3, 8, 16]
                }
            else:
                self.dynamic_shape.min_input_shape = {
                    "arg_max_input": [1, 8, 16, 24]
                }
                self.dynamic_shape.max_input_shape = {
                    "arg_max_input": [4, 8, 16, 24]
                }
                self.dynamic_shape.opt_input_shape = {
                    "arg_max_input": [1, 8, 16, 24]
                }

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(attrs, dynamic_shape):
            return 1, 2

        attrs = [
            program_config.ops[i].attrs for i in range(len(program_config.ops))
        ]

117
        self.trt_param.workspace_size = 1024000
118 119 120 121
        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
122 123
            attrs, False
        ), 1e-5
124 125
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
126 127
            attrs, False
        ), 1e-3
128 129 130 131 132

        # for dynamic_shape
        generate_dynamic_shape(attrs)
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
133 134
            attrs, True
        ), 1e-5
135 136
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
137 138
            attrs, True
        ), 1e-3
139 140 141 142 143 144 145

    def test(self):
        self.run_test()


if __name__ == "__main__":
    unittest.main()