base.py 32.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
S
songyouwei 已提交
15
import decorator
16
import contextlib
17 18
import functools
import inspect
19
import sys
20 21 22
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
23
from paddle.fluid.framework import global_var
H
hong 已提交
24
from paddle.fluid.multiprocess_utils import CleanupFuncRegistrar
M
minqiyang 已提交
25
from .tracer import Tracer
Z
Zeng Jinle 已提交
26
import logging
27
from ..data_feeder import convert_dtype
L
Leo Chen 已提交
28
import warnings
29 30 31 32
from ..framework import (
    _get_paddle_place,
    _in_eager_without_dygraph_check,
)
33
import paddle
34
import warnings
35

36
__all__ = [
37 38 39 40 41 42 43 44
    'no_grad',
    'no_grad_',
    'grad',
    'guard',
    'enable_dygraph',
    'disable_dygraph',
    'enabled',
    'to_variable',
45
]
46

H
hjyp 已提交
47
# Flag that indicates whether running code under `@to_static`
48 49 50 51


def in_declarative_mode():
    """
H
hjyp 已提交
52
    Return a bool value that indicates whether running code under `@to_static`
53 54

    """
55
    return global_var._in_declarative_mode_
56

57

58 59 60
def declarative_unsupport_argument_warning(
    func_name, input_names, inputs, support_values
):
61 62 63 64 65 66 67 68
    """
    Warning if inputs do not elementwisely equals to support_values.
    It's a utility function for dy2static when dygraph interface have
    more inputs than static interface such as paddle.grad.

    """
    for name, inp, sup in zip(input_names, inputs, support_values):
        if inp != sup:
69 70 71 72
            warnings.warn(
                f"{func_name} has unsupported parameter in jit: "
                + f"{name}, jit will discard it"
            )
73 74


75 76 77 78 79 80 81 82 83 84 85
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


86 87 88
@signature_safe_contextmanager
def _switch_declarative_mode_guard_(is_declarative=True):

89 90 91
    global global_var
    original_val = global_var._in_declarative_mode_
    global_var._in_declarative_mode_ = is_declarative
92
    yield
93
    global_var._in_declarative_mode_ = original_val
94 95


96 97 98 99 100 101
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
102 103 104 105 106
    try:
        yield
    finally:
        if tracer:
            tracer._enable_program_desc_tracing = original_val
107 108


109 110
@signature_safe_contextmanager
def param_guard(parameters):
111
    # Note: parameters is a reference of self._parameters or self._buffers
姜永久 已提交
112
    if in_declarative_mode() and not framework.in_dygraph_mode() and parameters:
113 114
        origin_parameters = parameters.copy()
        for name, var_base in parameters.items():
115 116 117 118 119
            if isinstance(var_base, list):
                new_var = [_convert_into_variable(var) for var in var_base]
            else:
                new_var = _convert_into_variable(var_base)
            parameters[name] = new_var
120 121 122 123 124 125
        yield
        parameters.update(origin_parameters)
    else:
        yield


J
Jiabin Yang 已提交
126
def _convert_into_variable(tensor):
127 128 129
    """
    Convert Varbase into Variable.
    """
J
Jiabin Yang 已提交
130
    if isinstance(tensor, (core.eager.Tensor, core.VarBase)):
131
        # Check whether has been created before.
J
Jiabin Yang 已提交
132
        new_var = tensor.block._find_var_recursive(tensor.name)
133 134 135
        if new_var is not None:
            assert isinstance(new_var, framework.Variable)
        # Convert ParamBase into Parameter with same attributes in dy2stat.
136 137 138
        elif isinstance(
            tensor, (framework.EagerParamBase, framework.ParamBase)
        ):
J
Jiabin Yang 已提交
139
            new_var = tensor._to_static_var(to_parameter=True)
140 141 142 143 144 145 146 147 148
        else:
            # Note(Aurelius84): Convert VarBase in self._buffers into Variable with
            # same attributes and set persistable=True to allow saving this var.
            # Because users can create a VarBase in `__init__`  like a
            # `mask` Tensor or `hidden_0` in RNN layers, which is equivalent to a Parameter
            # and necessary for inferring. It will be pruned if it's not necessary for inferring.

            # But if its shape is empty while created from `create_variable()`, we consider this buffer
            # non-persistable. See case of `drop_state` in lstm api.
J
Jiabin Yang 已提交
149
            is_persistable = len(tensor.shape) > 0
150

151 152 153
            new_var = tensor._to_static_var(
                to_parameter=False, persistable=is_persistable
            )
154 155 156 157 158 159 160 161 162 163 164 165
        # add param into parameter recorder to collect all the params used in this program.
        if new_var.persistable is True:
            # TODO(@xiongkun): 0d-tensor may be affected at present,
            # but there is no particularly good method to identify whether 0d-tensor
            # is used as buffer or "drop_out_state" in LSTM buffer variable.
            from paddle.jit.dy2static.program_translator import (
                ProgramTranslator,
            )

            ProgramTranslator.get_instance()._params_recorder.add(
                tensor.block.program, tensor
            )
166 167
        return new_var
    else:
J
Jiabin Yang 已提交
168
        return tensor
169 170


171
def enabled():
172 173 174
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
175 176
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable_dygraph`
    and :ref:`api_fluid_dygraph_disable_dygraph` api .
177 178

    **Note**:
J
Jiabin Yang 已提交
179 180
        ``fluid.dygraph.enabled`` is the alias of ``fluid.in_dygraph_mode``, and
        ``fluid.in_dygraph_mode`` is recommended to use for now.
181 182 183 184 185 186 187 188 189 190 191 192 193 194

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
J
Jiabin Yang 已提交
195
    # TODO(jiabin): Make this check as in_dygraph_mode when we support default eager mode.
姜永久 已提交
196
    return framework.in_dygraph_mode()
197 198


199 200
def enable_dygraph(place=None):
    """
201 202 203 204 205

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn OFF static graph mode. You can turn ON static graph mode by `enable_static <./disable_dygraph_en.html>`_ .
206 207

    Parameters:
208
        place(paddle.CPUPlace|paddle.CUDAPlace|str, optional): Place to run dynamic graph. Default: None. Which means that the running place will be
209 210
            determined according to the way of paddle compilation. If ``place`` is string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
            index of the GPUs.
211 212 213 214 215 216 217

    return:
        None

    Examples:
        .. code-block:: python

218 219 220 221
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
222
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
223 224 225

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
226 227

    """
228 229 230
    global global_var
    if global_var._functional_dygraph_context_manager is None:
        global_var._functional_dygraph_context_manager = guard(
231 232
            place=_get_paddle_place(place)
        )
233
        global_var._functional_dygraph_context_manager.__enter__()
234

H
hong 已提交
235 236 237
        # call disable_dygraph when Python exit
        CleanupFuncRegistrar.register(disable_dygraph)

238 239 240

def disable_dygraph():
    """
241 242 243 244 245

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn ON static graph mode. You can turn ON static graph mode by `disable_static <./enable_dygraph_en.html>`_ .
246 247 248 249 250 251 252

    return:
        None

    Examples:
        .. code-block:: python

253 254 255 256
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
257
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
258 259 260

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
261 262

    """
263 264 265 266
    global global_var
    if global_var._functional_dygraph_context_manager is not None:
        global_var._functional_dygraph_context_manager.__exit__(*sys.exc_info())
        global_var._functional_dygraph_context_manager = None
267 268


269 270 271 272
@signature_safe_contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
273 274
        has_grad = tracer._has_grad
        tracer._has_grad = is_train
275 276 277
        try:
            yield
        finally:
278
            tracer._has_grad = has_grad
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    else:
        yield


def no_grad(func=None):
    """
    :api_attr: imperative

    Create a context which disables dygraph gradient calculation.
    In this mode, the result of every computation will have `stop_gradient=True`.

    Also functions as a decorator. (Make sure to instantiate without parenthesis.)

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)  # l0.weight.gradient() is None
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                # l1.weight.stop_gradient is False
                tmp = l1.weight * 2  # tmp.stop_gradient is True
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()
            print(tmp.gradient() is None)  # True
            print(l0.weight.gradient() is None)  # False

        # use as decorator

        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
                inp = np.ones([3, 1024], dtype='float32')
                t = fluid.dygraph.base.to_variable(inp)
                linear1 = fluid.Linear(1024, 4, bias_attr=False)
                linear2 = fluid.Linear(4, 4)
                ret = linear1(t)
                dy_ret = linear2(ret)

        test_layer()

    """
330 331 332 333
    if in_declarative_mode():
        warnings.warn(
            "paddle.no_grad is only supported for inference model, and not supported for training under @to_static."
        )
334 335 336 337 338 339 340 341 342 343 344 345
    if func is None:
        return _switch_tracer_mode_guard_(is_train=False)
    else:

        @decorator.decorator
        def __impl__(func, *args, **kwargs):
            with _switch_tracer_mode_guard_(is_train=False):
                return func(*args, **kwargs)

        return __impl__(func)


346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
class _DecoratorContextManager:
    """Allow a context manager to be used as a decorator"""

    def __call__(self, func):
        @decorator.decorator
        def _decorate_function(func, *args, **kwargs):
            with self:
                return func(*args, **kwargs)

        @decorator.decorator
        def _decorate_generator(func, *args, **kwargs):
            gen = func(*args, **kwargs)
            with self:
                for x in gen:
                    yield x

        if inspect.isgeneratorfunction(func):
            return _decorate_generator(func)
        else:
            return _decorate_function(func)

    def __enter__(self):
        raise NotImplementedError

    def __exit__(self, exc_type, exc_value, traceback):
        raise NotImplementedError

    def clone(self):
        # override this method if your children class takes __init__ parameters
        return self.__class__()


def is_grad_enabled():
    """
    Returns whether current dygraph gradient calculation mode is enabled.

    Returns:
        bool: True if current dygraph gradient calculation mode is enabled, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            # Dygraph gradient calculation mode is enabled by default.
            paddle.is_grad_enabled() # True

            with paddle.set_grad_enabled(False):
                paddle.is_grad_enabled() # False

            paddle.enable_static()
            paddle.is_grad_enabled() # False
    """
    tracer = framework._dygraph_tracer()
    return tracer._has_grad if tracer else False


def _set_grad_enabled(mode):
    tracer = framework._dygraph_tracer()
    if tracer:
        tracer._has_grad = mode


class set_grad_enabled(_DecoratorContextManager):
    """
    Create a context which enables or disables dygraph gradient calculation.

    Args:
        mode(bool): whether to enable (`True`), or disable (`False`) grad.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([1.], stop_gradient=False)
            is_train = False
            with paddle.set_grad_enabled(is_train):
                y = x * 2
            assert(y.stop_gradient == True)

            paddle.set_grad_enabled(True)
            y = x * 2
            assert(y.stop_gradient == False)

            paddle.set_grad_enabled(False)
            y = x * 2
            assert(y.stop_gradient == True)
    """

    def __init__(self, mode):
        self.prev = is_grad_enabled()
        _set_grad_enabled(mode)
        self.mode = mode

    def __enter__(self):
        ...

    def __exit__(self, *args):
        _set_grad_enabled(self.prev)

    def clone(self):
        return self.__class__(self.mode)


class no_grad_(_DecoratorContextManager):
454
    """
455 456
    :api_attr: imperative

457
    Create a context which disables dygraph gradient calculation.
458 459
    In this mode, the result of every computation will have `stop_gradient` set
    to `True`.
460

461
    Also functions as a decorator. (Make sure to use an instance.)
462 463 464 465 466 467

    Examples:

     .. code-block:: python

        import numpy as np
468
        import paddle
469

470 471 472
        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
473 474 475
        l0 = paddle.nn.Linear(2, 2)  # l0.weight.gradient() is None
        l1 = paddle.nn.Linear(2, 2)
        with paddle.no_grad():
476 477
            # l1.weight.stop_gradient is False
            tmp = l1.weight * 2  # tmp.stop_gradient is True
478
        x = paddle.to_tensor(data)
479 480 481 482 483
        y = l0(x) + tmp
        o = l1(y)
        o.backward()
        print(tmp.gradient() is None)  # True
        print(l0.weight.gradient() is None)  # False
484 485 486

        # use as decorator

487
        @paddle.no_grad()
488
        def test_layer():
489
            inp = np.ones([3, 1024], dtype='float32')
490 491 492
            t = paddle.to_tensor(inp)
            linear1 = paddle.nn.Linear(1024, 4, bias_attr=False)
            linear2 = paddle.nn.Linear(4, 4)
493 494
            ret = linear1(t)
            dy_ret = linear2(ret)
495 496 497 498

        test_layer()
    """

499 500 501
    def __enter__(self):
        self.prev = is_grad_enabled()
        _set_grad_enabled(False)
502

503 504
    def __exit__(self, *args):
        _set_grad_enabled(self.prev)
505

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

class enable_grad(_DecoratorContextManager):
    """
    :api_attr: imperative

    Create a context which enable dygraph gradient calculation,
    if it has been disabled by `no_grad` or `set_grad_enabled`.

    In this mode, the result of every computation will have `stop_gradient` set
    to `False`.

    Also functions as a decorator. (Make sure to use an instance.)

    Examples:

     .. code-block:: python

        import paddle

        # use as generator

        x = paddle.to_tensor([1.], stop_gradient=False)
        with paddle.no_grad():
            with paddle.enable_grad():
                y = x * 2
        assert(y.stop_gradient == False)
        y.backward()
        assert(x.grad is not None)

        # use as decorator

        @paddle.enable_grad()
        def double(x):
            return x * 2

        with paddle.no_grad():
            z = double(x)

        assert(z.stop_gradient == False)
    """
546 547

    def __enter__(self):
548 549
        self.prev = is_grad_enabled()
        _set_grad_enabled(True)
550 551

    def __exit__(self, *args):
552
        _set_grad_enabled(self.prev)
553 554


S
rename  
sneaxiy 已提交
555
@signature_safe_contextmanager
P
Paddle CI 已提交
556
def guard(place=None):
557
    """
558 559
    :api_attr: imperative

560
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
561

562
    Parameters:
563
        place(fluid.CPUPlace| fluid.CUDAPlace|str, optional): Place to execute dygraph.
564 565 566
            If None, the running place will be determined according to the way of paddle compilation.
            If ``place`` is string, It can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None
567 568 569 570 571 572 573 574 575 576 577 578

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
579
            inp = np.ones([3, 1024], dtype='float32')
580
            t = fluid.dygraph.base.to_variable(inp)
581 582 583 584
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
585 586

    """
587 588
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
589
    tracer = Tracer()
590
    VarBase = core.VarBase
M
minqiyang 已提交
591

592
    if place is not None:
593
        expected_place = _get_paddle_place(place)
594 595
    else:
        expected_place = framework._current_expected_place()
M
minqiyang 已提交
596

597 598
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
599
            with framework._dygraph_guard(tracer):
600
                with framework._dygraph_place_guard(expected_place):
P
Paddle CI 已提交
601
                    yield
602 603


604
@framework.non_static_only
605 606 607 608 609 610 611 612 613 614
def grad(
    outputs,
    inputs,
    grad_outputs=None,
    retain_graph=None,
    create_graph=False,
    only_inputs=True,
    allow_unused=False,
    no_grad_vars=None,
):
615
    '''
Z
Zeng Jinle 已提交
616
    .. note::
617
        **This API is ONLY available in imperative mode.**
Z
Zeng Jinle 已提交
618 619 620 621

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
622
        outputs (Tensor|list(Tensor)|tuple(Tensor)): the output Tensor or
623
            Tensor list/tuple of the graph to compute gradients.
624
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or
625
            Tensor list/tuple of the graph to compute gradients. The returned
626 627 628 629 630
            values of this API are the gradients of `inputs` .
        grad_outputs (Tensor|list(Tensor|None)|tuple(Tensor|None), optional):
            initial gradient values of `outputs` . If `grad_outputs` is None,
            the initial gradient values of `outputs` would be Tensors filled with 1;
            if `grad_outputs` is not None, it must have the same length as `outputs` ,
Z
Zeng Jinle 已提交
631
            and in this case, the initial gradient value of the i-th `outputs` would
632
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs`
Z
Zeng Jinle 已提交
633
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
634
            `grad_outputs` is a Tensor. Default None.
635 636 637
        retain_graph (bool, optional): whether to retain the forward graph which
            is used to calculate the gradient. When it is True, the graph would
            be retained, in which way users can calculate backward twice for the
Z
Zeng Jinle 已提交
638
            same graph. When it is False, the graph would be freed. Default None,
639
            which means it is equal to `create_graph` .
Z
Zeng Jinle 已提交
640 641 642 643 644
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
645 646
            `inputs` . If it is False, the gradients of all remaining leaf
            Tensors in the graph would be also computed and accumulated.
Z
Zeng Jinle 已提交
647 648
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
649 650 651 652
            not supported yet.
        allow_unused (bool, optional): whether to raise error or return None if some
            Tensors of `inputs` are unreachable in the graph. If some Tensors of
            `inputs` are unreachable in the graph (i.e., their gradients are None),
Z
Zeng Jinle 已提交
653 654
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
655
        no_grad_vars (Tensor|list(Tensor)|tuple(Tensor)|set(Tensor), optional):
656
            the Tensors whose gradients are not needed to compute. Default None.
Z
Zeng Jinle 已提交
657 658

    Returns:
659 660
        list: a list of Tensors, whose length is the same as the Tensor number
        inside `inputs`, and the i-th returned Tensor is the sum of gradients of
Z
Zeng Jinle 已提交
661 662
        `outputs` with respect to the i-th `inputs`.

663
    Examples:
Z
Zeng Jinle 已提交
664
        .. code-block:: python
665
            :name: code-example-1
Z
Zeng Jinle 已提交
666

667
            import paddle
Z
Zeng Jinle 已提交
668 669

            def test_dygraph_grad(create_graph):
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
                x = paddle.ones(shape=[1], dtype='float32')
                x.stop_gradient = False
                y = x * x

                # Since y = x * x, dx = 2 * x
                dx = paddle.grad(
                        outputs=[y],
                        inputs=[x],
                        create_graph=create_graph,
                        retain_graph=True)[0]

                z = y + dx

                # If create_graph = False, the gradient of dx
                # would not be backpropagated. Therefore,
                # z = x * x + dx, and x.gradient() = 2 * x = 2.0

                # If create_graph = True, the gradient of dx
                # would be backpropagated. Therefore,
                # z = x * x + dx = x * x + 2 * x, and
                # x.gradient() = 2 * x + 2 = 4.0

                z.backward()
                return x.gradient()

            print(test_dygraph_grad(create_graph=False)) # [2.]
Z
Zeng Jinle 已提交
696 697 698
            print(test_dygraph_grad(create_graph=True)) # [4.]

        .. code-block:: python
699
            :name: code-example-2
Z
Zeng Jinle 已提交
700

701
            import paddle
Z
Zeng Jinle 已提交
702 703

            def test_dygraph_grad(grad_outputs=None):
704
                x = paddle.to_tensor(2.0)
Z
Zeng Jinle 已提交
705 706 707
                x.stop_gradient = False

                y1 = x * x
708
                y2 = x * 3
Z
Zeng Jinle 已提交
709 710 711 712 713 714 715 716 717 718 719

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

720
                dx = paddle.grad(
721
                    outputs=[y1, y2],
Z
Zeng Jinle 已提交
722 723 724 725 726
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

727
            grad_value = paddle.to_tensor(4.0)
Z
Zeng Jinle 已提交
728 729 730 731
            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
732
            print(test_dygraph_grad([None, grad_value])) # [16.]
Z
Zeng Jinle 已提交
733 734

            # dy1 = [4], dy2 = [1]
735
            print(test_dygraph_grad([grad_value, None])) # [19.]
Z
Zeng Jinle 已提交
736 737

            # dy1 = [3], dy2 = [4]
738
            grad_y1 = paddle.to_tensor(3.0)
739
            print(test_dygraph_grad([grad_y1, grad_value])) # [24.]
740
    '''
741 742 743 744
    if in_declarative_mode():
        # In dy2static context, we call static interface `gradients`
        # to calculate grads.
        from paddle.static import gradients
745

746 747 748 749
        declarative_unsupport_argument_warning(
            "paddle.grad",
            ["retain_graph", "create_grad", "only_inputs", "allow_unused"],
            [retain_graph, create_graph, only_inputs, allow_unused],
750 751
            [None, False, True, False],
        )
752
        return gradients(outputs, inputs, grad_outputs, no_grad_vars)
Z
Zeng Jinle 已提交
753

754 755 756 757 758 759
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
J
Jiabin Yang 已提交
760
                if _in_eager_without_dygraph_check():
761
                    assert isinstance(
762 763
                        each_var, core.eager.Tensor
                    ), "Elements of {} must be Tensor".format(name)
764 765
                else:
                    assert isinstance(
766 767
                        each_var, core.VarBase
                    ), "Elements of {} must be Variable".format(name)
768 769
            return in_out_list
        else:
J
Jiabin Yang 已提交
770
            if _in_eager_without_dygraph_check():
771
                assert isinstance(
772 773
                    in_out_list, core.eager.Tensor
                ), "{} must be Tensor or list of Tensor".format(name)
774 775 776 777
            else:
                assert isinstance(
                    in_out_list, core.VarBase
                ), "{} must be Variable or list of Variable".format(name)
778 779 780 781 782 783 784 785 786 787 788
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
J
Jiabin Yang 已提交
789
                if _in_eager_without_dygraph_check():
790 791 792 793 794 795 796
                    assert isinstance(
                        each_var, core.eager.Tensor
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
                else:
                    assert isinstance(
                        each_var, core.VarBase
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
797 798 799 800 801
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
802 803
            outputs
        ), "The length of grad_outputs must be equal to outputs"
804

Z
Zeng Jinle 已提交
805 806
    if no_grad_vars is None:
        no_grad_vars = []
H
hong 已提交
807
    elif isinstance(no_grad_vars, (core.VarBase, core.eager.Tensor)):
Z
Zeng Jinle 已提交
808
        no_grad_vars = [no_grad_vars]
809 810
    elif isinstance(no_grad_vars, core.eager.Tensor):
        no_grad_vars = [no_grad_vars]
Z
Zeng Jinle 已提交
811 812 813
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
J
Jiabin Yang 已提交
814
            if _in_eager_without_dygraph_check():
815
                assert isinstance(
816 817
                    var, core.eager.Tensor
                ), "no_grad_vars can only contains Tensor"
818 819
            else:
                assert isinstance(
820 821
                    var, core.VarBase
                ), "no_grad_vars can only contains Variable"
822
    else:
J
Jiabin Yang 已提交
823
        if _in_eager_without_dygraph_check():
824
            raise AssertionError(
825 826
                "no_grad_vars must be None, Tensor or list/tuple/set of Tensors"
            )
827 828 829 830
        else:
            raise AssertionError(
                "no_grad_vars must be None, Variable or list/tuple/set of Variables"
            )
831 832 833

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
834 835 836
    if retain_graph is None:
        retain_graph = create_graph

837 838 839
    assert isinstance(
        retain_graph, bool
    ), "retain_graph must be None, True or False"
Z
Zeng Jinle 已提交
840 841 842 843 844 845

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

J
Jiabin Yang 已提交
846
    if _in_eager_without_dygraph_check():
847 848 849 850 851 852 853 854 855 856
        return core.eager.run_partial_grad(
            outputs,
            inputs,
            grad_outputs,
            retain_graph,
            create_graph,
            only_inputs,
            allow_unused,
            no_grad_vars,
        )
J
Jiabin Yang 已提交
857 858 859
    else:
        place = core.Place()
        place.set_place(framework._current_expected_place())
860 861 862 863 864 865 866 867 868 869 870
        return core.dygraph_partial_grad(
            inputs,
            outputs,
            grad_outputs,
            no_grad_vars,
            place,
            create_graph,
            retain_graph,
            allow_unused,
            only_inputs,
        )
871 872


873
@framework.dygraph_only
874
def to_variable(value, name=None, zero_copy=None, dtype=None):
875
    r"""
876 877
    :api_attr: imperative

878
    The API will create a ``Variable`` object from
C
chentianyu03 已提交
879
    tuple, list, numpy\.ndarray or Variable object.
880

881
    Parameters:
882
        value(tuple|list|ndarray|Variable|Tensor): Initial data.
C
chentianyu03 已提交
883
            Can be a list, tuple, NumPy ndarray, Variable, Tensor.
884 885
            The shape can be multi-dimensional. The data type is one of
            numpy\.{float16, float32, float64, int16, int32, int64,
886
            uint8, uint16, complex64, complex128}.
887 888 889 890 891
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
        zero_copy(bool, optional): Whether to share memory with the input numpy
            array. This parameter only works with CPUPlace and will be set to
L
Leo Chen 已提交
892
            True when it is None. Default: None. (Note: zero_copy is discarded temporally for some reason.)
893
        dtype(str, optional): The desired data type of returned ``Variable`` .
894
            Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' ,
895
            'int32' , 'int64' , 'uint8' . Default: None.
896

897
    Returns:
898 899 900
        Variable : If ``value`` is a tuple/list/numpy\.ndarray object,
            return ``Tensor`` created from the corresponding numpy\.ndarray object, which has
            same data type and shape with ``value``.
901

902 903 904 905 906 907 908 909

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

910
        with fluid.dygraph.guard(fluid.CPUPlace()):
911
            x = np.ones([2, 2], np.float32)
912 913 914
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
915
            y = fluid.dygraph.to_variable(x)
916 917
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
918 919 920 921
            c = np.array([2+1j, 2])
            z = fluid.dygraph.to_variable(c)
            z.numpy() # array([2.+1.j, 2.+0.j])
            z.dtype # 'complex128'
922 923 924 925 926 927 928

            y = fluid.dygraph.to_variable([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
            y.shape     # [3L, 2L]

            y = fluid.dygraph.to_variable(((0.1, 1.2), (2.2, 3.1), (4.9, 5.2)), dtype='int32')
            y.shape     # [3L, 2L]

929
    """
930 931 932 933 934 935 936 937 938 939
    support_type = (
        list,
        tuple,
        np.ndarray,
        core.eager.Tensor,
        core.VarBase,
        framework.Variable,
        core.Tensor,
        core.LoDTensor,
    )
940 941 942
    if not isinstance(value, support_type):
        raise TypeError(
            "The type of 'value' in fluid.dygraph.to_variable must be %s, but received %s."
943 944
            % (support_type, type(value))
        )
H
hong 已提交
945
    if isinstance(value, (core.eager.Tensor, core.VarBase, framework.Variable)):
946 947 948 949
        return value
    elif isinstance(value, (core.Tensor, core.LoDTensor)):
        return core.VarBase(value)
    else:
950 951 952 953
        if isinstance(
            framework._current_expected_place(), framework.core.CPUPlace
        ):
            # TODO(zhiqiu): we found two problems when enable zero_copy on CPUPlace.
954
            # (1): eigen requires 16-bytes alignments, but the data of numpy array may not statisfy.
L
Leo Chen 已提交
955 956 957 958 959 960 961 962 963
            # Details: https://eigen.tuxfamily.org/dox/group__TopicUnalignedArrayAssert.html
            # (2): when used in flask framework, it may result in hang.
            # Details: https://github.com/PaddlePaddle/Paddle/issues/26635
            # So, we temporally diable the zero_copy strategy.
            if zero_copy == True:
                warnings.warn(
                    "Currently, zero_copy is not supported, and it will be discarded."
                )
                zero_copy = False
964
        else:
965 966 967
            assert (
                not zero_copy
            ), "zero_copy mode can only be used with CPUPlace"
968 969 970 971 972 973 974 975 976

        if not isinstance(value, np.ndarray):
            value = np.array(value)

        if dtype is not None:
            dtype = convert_dtype(dtype)
            if value.dtype != dtype:
                value = value.astype(dtype)

J
Jiabin Yang 已提交
977
        if _in_eager_without_dygraph_check():
978 979 980 981 982 983 984 985
            return core.eager.Tensor(
                value,
                framework._current_expected_place(),
                False,
                zero_copy,
                name if name else None,
                True,
            )
986
        else:
987 988 989 990 991 992 993
            py_var = core.VarBase(
                value=value,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name if name else '',
            )
994
            return py_var