static_gpubox_trainer.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import logging
import os
import sys
import time

import paddle
import paddle.distributed.fleet as fleet
from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil

fleet_util = FleetUtil()

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))

logging.basicConfig(
    format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO
)
logger = logging.getLogger(__name__)


def get_dataset(inputs, config):
    dataset = paddle.distributed.InMemoryDataset()
    dataset._set_use_ps_gpu(config.get('runner.use_gpu'))
    pipe_cmd = config.get('runner.pipe_command')
    dataset.init(
        use_var=inputs,
        pipe_command=pipe_cmd,
        batch_size=32,
        thread_num=int(config.get('runner.thread_num')),
        fs_name=config.get("runner.fs_name", ""),
        fs_ugi=config.get("runner.fs_ugi", ""),
    )
    dataset.set_filelist(["train_data/sample_train.txt"])
    dataset.update_settings(
        parse_ins_id=config.get("runner.parse_ins_id", False),
        parse_content=config.get("runner.parse_content", False),
    )

    return dataset


class Main(object):
    def __init__(self):
        self.metrics = {}
        self.input_data = None
        self.reader = None
        self.exe = None
        self.model = None
        self.PSGPU = None
        self.train_result_dict = {}
        self.train_result_dict["speed"] = []
        self.train_result_dict["auc"] = []

    def run(self):
        from ps_dnn_trainer import YamlHelper

        yaml_helper = YamlHelper()
        config_yaml_path = 'config_gpubox.yaml'
        self.config = yaml_helper.load_yaml(config_yaml_path)

        os.environ["CPU_NUM"] = str(self.config.get("runner.thread_num"))
        fleet.init()
        self.network()
        if fleet.is_server():
            self.run_server()
        elif fleet.is_worker():
            self.run_worker()
            fleet.stop_worker()
        logger.info("Run Success, Exit.")
        logger.info("-" * 100)

    def network(self):
        from ps_dnn_trainer import StaticModel, get_user_defined_strategy

        # self.model = get_model(self.config)
        self.model = StaticModel(self.config)
        self.input_data = self.model.create_feeds()
        self.init_reader()
        self.metrics = self.model.net(self.input_data)
        self.inference_target_var = self.model.inference_target_var
        logger.info("cpu_num: {}".format(os.getenv("CPU_NUM")))
        # self.model.create_optimizer(get_strategy(self.config)
        user_defined_strategy = get_user_defined_strategy(self.config)
        optimizer = paddle.optimizer.Adam(0.01, lazy_mode=True)
        optimizer = fleet.distributed_optimizer(
            optimizer, user_defined_strategy
        )
        optimizer.minimize(self.model._cost)
        logger.info("end network.....")

    def run_server(self):
        logger.info("Run Server Begin")
        fleet.init_server(self.config.get("runner.warmup_model_path"))
        fleet.run_server()

    def run_worker(self):
        logger.info("Run Worker Begin")
        use_cuda = int(self.config.get("runner.use_gpu"))
        use_auc = self.config.get("runner.use_auc", False)
        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
        self.exe = paddle.static.Executor(place)
        '''
        with open("./{}_worker_main_program.prototxt".format(
                fleet.worker_index()), 'w+') as f:
            f.write(str(paddle.static.default_main_program()))
        with open("./{}_worker_startup_program.prototxt".format(
                fleet.worker_index()), 'w+') as f:
            f.write(str(paddle.static.default_startup_program()))
        '''
        self.exe.run(paddle.static.default_startup_program())
        fleet.init_worker()
        '''
        save_model_path = self.config.get("runner.model_save_path")
        if save_model_path and (not os.path.exists(save_model_path)):
            os.makedirs(save_model_path)
        '''
        reader_type = self.config.get("runner.reader_type", None)
        epochs = int(self.config.get("runner.epochs"))
        sync_mode = self.config.get("runner.sync_mode")

        gpus_env = os.getenv("FLAGS_selected_gpus")
        self.PSGPU = paddle.framework.core.PSGPU()
        gpuslot = [int(i) for i in range(1, self.model.sparse_inputs_slots)]
        gpu_mf_sizes = [self.model.sparse_feature_dim - 1] * (
            self.model.sparse_inputs_slots - 1
        )
        self.PSGPU.set_slot_vector(gpuslot)
        self.PSGPU.set_slot_dim_vector(gpu_mf_sizes)
        self.PSGPU.init_gpu_ps([int(s) for s in gpus_env.split(",")])
        gpu_num = len(gpus_env.split(","))
        opt_info = paddle.static.default_main_program()._fleet_opt
        if use_auc is True:
            opt_info['stat_var_names'] = [
                self.model.stat_pos.name,
                self.model.stat_neg.name,
            ]
        else:
            opt_info['stat_var_names'] = []

        for epoch in range(epochs):
            epoch_start_time = time.time()

            self.dataset_train_loop(epoch)

            epoch_time = time.time() - epoch_start_time

            self.PSGPU.end_pass()

            fleet.barrier_worker()
            self.reader.release_memory()
            logger.info("finish {} epoch training....".format(epoch))
        self.PSGPU.finalize()

    def init_reader(self):
        if fleet.is_server():
            return
        # self.reader, self.file_list = get_reader(self.input_data, config)
        self.reader = get_dataset(self.input_data, self.config)

    def dataset_train_loop(self, epoch):
        start_time = time.time()
        self.reader.load_into_memory()
        print(
            "self.reader.load_into_memory cost :{} seconds".format(
                time.time() - start_time
            )
        )

        begin_pass_time = time.time()
        self.PSGPU.begin_pass()
        print(
            "begin_pass cost:{} seconds".format(time.time() - begin_pass_time)
        )

        logger.info("Epoch: {}, Running Dataset Begin.".format(epoch))
        fetch_info = [
            "Epoch {} Var {}".format(epoch, var_name)
            for var_name in self.metrics
        ]
        fetch_vars = [var for _, var in self.metrics.items()]
        print_step = int(self.config.get("runner.print_interval"))
        self.exe.train_from_dataset(
            program=paddle.static.default_main_program(),
            dataset=self.reader,
            debug=self.config.get("runner.dataset_debug"),
        )


if __name__ == "__main__":
    paddle.enable_static()
    benchmark_main = Main()
    benchmark_main.run()