test_imperative.py 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
J
JiabinYang 已提交
21
from paddle.fluid.imperative.nn import FC
M
minqiyang 已提交
22
from test_imperative_base import new_program_scope
23 24


X
Xin Pan 已提交
25
class MyLayer(fluid.imperative.Layer):
X
Xin Pan 已提交
26 27
    def __init__(self, name_scope):
        super(MyLayer, self).__init__(name_scope)
28 29

    def forward(self, inputs):
M
minqiyang 已提交
30
        x = fluid.layers.relu(inputs)
31
        self._x_for_debug = x
X
Xin Pan 已提交
32 33 34
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
35 36


X
Xin Pan 已提交
37 38 39 40 41 42
class MyPyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
X
Xin Pan 已提交
43
        return np.tanh(inputs[0])
X
Xin Pan 已提交
44 45

    @staticmethod
X
Xin Pan 已提交
46 47
    def backward(inputs):
        inp, out, dout = inputs
X
Xin Pan 已提交
48
        return np.array(dout) * (1 - np.square(np.array(out)))
X
Xin Pan 已提交
49 50


X
Xin Pan 已提交
51
class MLP(fluid.imperative.Layer):
X
Xin Pan 已提交
52 53 54 55
    def __init__(self, name_scope):
        super(MLP, self).__init__(name_scope)
        self._fc1 = FC(self.full_name(),
                       3,
X
Xin Pan 已提交
56 57
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
58 59
        self._fc2 = FC(self.full_name(),
                       4,
X
Xin Pan 已提交
60 61 62 63
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
M
minqiyang 已提交
64
        x = self._fc1(inputs)
X
Xin Pan 已提交
65 66 67 68 69
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


70
class SimpleRNNCell(fluid.imperative.Layer):
X
Xin Pan 已提交
71 72 73
    def __init__(self, name_scope, step_input_size, hidden_size, output_size,
                 param_attr):
        super(SimpleRNNCell, self).__init__(name_scope)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self._dype = core.VarDesc.VarType.FP32
        from paddle.fluid.layer_helper import LayerHelper
        self._helper = LayerHelper(
            'SimpleRNNCell', act="tanh", param_attr=param_attr)

    def _build_once(self, inputs, pre_hidden):
        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
        self._i2h_w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
        self._h2h_w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
        self._h2o_w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):

        tmp_i2h = self._helper.create_variable_for_type_inference(self._dtype)
        tmp_h2h = self._helper.create_variable_for_type_inference(self._dtype)
        hidden = self._helper.create_variable_for_type_inference(self._dype)
        out = self._helper.create_variable_for_type_inference(self._dype)
        softmax_out = self._helper.create_variable_for_type_inference(
            self._dtype)
        reduce_out = self._helper.create_variable_for_type_inference(
            self._dtype)
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
        hidden = self._helper.append_activation(hidden)

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
            attrs={'dim': None,
                   'keep_dim': False,
                   'reduce_all': True})

        return reduce_out, hidden


J
JiabinYang 已提交
162
class SimpleRNN(fluid.imperative.Layer):
X
Xin Pan 已提交
163 164
    def __init__(self, name_scope):
        super(SimpleRNN, self).__init__(name_scope)
J
JiabinYang 已提交
165 166
        self.seq_len = 4
        self._cell = SimpleRNNCell(
X
Xin Pan 已提交
167
            self.full_name(),
J
JiabinYang 已提交
168 169 170 171
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
172 173

    def forward(self, inputs):
J
JiabinYang 已提交
174
        outs = list()
J
JiabinYang 已提交
175 176 177 178 179 180 181 182 183
        pre_hiddens = list()

        init_hidden = fluid.layers.tensor.create_parameter(
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
184
        for i in range(self.seq_len):
J
JiabinYang 已提交
185 186 187
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
188 189
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
190

J
JiabinYang 已提交
191
        return outs, pre_hiddens
J
JiabinYang 已提交
192 193


194
class TestImperative(unittest.TestCase):
X
Xin Pan 已提交
195
    def test_sum_op(self):
X
polish  
Xin Pan 已提交
196
        x = np.ones([2, 2], np.float32)
X
Xin Pan 已提交
197 198 199
        with fluid.imperative.guard():
            inputs = []
            for _ in range(10):
X
polish  
Xin Pan 已提交
200
                inputs.append(fluid.imperative.base.to_variable(x))
X
Xin Pan 已提交
201 202 203
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
            loss._backward()
X
polish  
Xin Pan 已提交
204 205
            self.assertTrue(np.allclose(ret._numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0]._gradient(), x))
X
Xin Pan 已提交
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    #  def test_layer(self):
    #  with fluid.imperative.guard():
    #  cl = core.Layer()
    #  cl.forward([])
    #  l = fluid.imperative.Layer("l")
    #  self.assertRaises(NotImplementedError, l.forward, [])

    #  def test_pylayer_func_id(self):

    #  with fluid.imperative.guard():

    #  class PyLayer1(fluid.imperative.PyLayer):
    #  def __init__(self):
    #  super(PyLayer1, self).__init__()

    #  @staticmethod
    #  def forward(input):
    #  return input

    #  @staticmethod
    #  def backward(input):
    #  return input

    #  class PyLayer2(fluid.imperative.PyLayer):
    #  def __init__(self):
    #  super(PyLayer2, self).__init__()

    #  @staticmethod
    #  def forward(input):
    #  return input

    #  @staticmethod
    #  def backward(input):
    #  return input

    #  py_layer_1 = PyLayer1()
    #  py_layer_2 = PyLayer2()
    #  py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
    #  py_layer_2(fluid.imperative.base.to_variable(np.ones([2, 2])))
    #  id = py_layer_1.forward_id
    #  self.assertGreater(id, 0)
    #  self.assertEqual(py_layer_1.backward_id, id + 1)
    #  self.assertEqual(py_layer_2.forward_id, id + 2)
    #  self.assertEqual(py_layer_2.backward_id, id + 3)
    #  py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
    #  self.assertEqual(py_layer_1.forward_id, id)

    #  def test_pylayer(self):
    #  np_inp = np.ones([2, 2], np.float32)
    #  with fluid.imperative.guard():
    #  my_py_layer = MyPyLayer()
    #  var_inp = fluid.imperative.base.to_variable(np_inp)
    #  outs = my_py_layer(var_inp)
    #  dy_out = np.sum(outs[0]._numpy())
    #  outs[0]._backward()
    #  dy_grad = var_inp._gradient()

    #  with new_program_scope():
    #  inp = fluid.layers.data(
    #  name="inp", shape=[2, 2], append_batch_size=False)
    #  # TODO(panyx0718): Paddle doesn't diff against data `inp`.
    #  x1 = inp * 1
    #  # TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
    #  x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
    #  param_grads = fluid.backward.append_backward(
    #  x, parameter_list=[x1.name])[0]
    #  exe = fluid.Executor(fluid.CPUPlace(
    #  ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

    #  static_out, static_grad = exe.run(
    #  feed={inp.name: np_inp},
    #  fetch_list=[x.name, param_grads[1].name])

    #  self.assertTrue(np.allclose(dy_out, static_out))
    #  self.assertTrue(np.allclose(dy_grad, static_grad))

    #  def test_layer_in_out(self):
    #  np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
    #  with fluid.imperative.guard():
    #  var_inp = fluid.imperative.base.to_variable(np_inp)
    #  l = MyLayer("my_layer")
    #  x = l(var_inp)[0]
    #  self.assertIsNotNone(x)
    #  dy_out = x._numpy()
    #  x._backward()
    #  dy_grad = l._x_for_debug._gradient()

    #  with new_program_scope():
    #  inp = fluid.layers.data(
    #  name="inp", shape=[3], append_batch_size=False)
    #  l = MyLayer("my_layer")
    #  x = l(inp)[0]
    #  param_grads = fluid.backward.append_backward(
    #  x, parameter_list=[l._x_for_debug.name])[0]
    #  exe = fluid.Executor(fluid.CPUPlace(
    #  ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

    #  static_out, static_grad = exe.run(
    #  feed={inp.name: np_inp},
    #  fetch_list=[x.name, param_grads[1].name])

    #  self.assertTrue(np.allclose(dy_out, static_out))
    #  self.assertTrue(np.allclose(dy_grad, static_grad))

    #  def test_mlp(self):
    #  np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
    #  with fluid.imperative.guard():
    #  var_inp = fluid.imperative.base.to_variable(np_inp)
    #  mlp = MLP("mlp")
    #  out = mlp(var_inp)
    #  dy_out = out._numpy()
    #  out._backward()
    #  dy_grad = mlp._fc1._w._gradient()

    #  with new_program_scope():
    #  inp = fluid.layers.data(
    #  name="inp", shape=[2, 2], append_batch_size=False)
    #  mlp = MLP("mlp")
    #  out = mlp(inp)
    #  param_grads = fluid.backward.append_backward(
    #  out, parameter_list=[mlp._fc1._w.name])[0]
    #  exe = fluid.Executor(fluid.CPUPlace(
    #  ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
    #  exe.run(fluid.default_startup_program())

    #  static_out, static_grad = exe.run(
    #  feed={inp.name: np_inp},
    #  fetch_list=[out.name, param_grads[1].name])

    #  self.assertTrue(np.allclose(dy_out, static_out))
    #  self.assertTrue(np.allclose(dy_grad, static_grad))

    #  params = mlp.parameters(True)
    #  self.assertEqual("mlp/MLP_0/FC_0_0.w_0", params[0].name)
    #  self.assertEqual("mlp/MLP_0/FC_0_0.b_0", params[1].name)
    #  self.assertEqual("mlp/MLP_0/FC_1_0.w_0", params[2].name)
    #  self.assertEqual("mlp/MLP_0/FC_1_0.b_0", params[3].name)
    #  self.assertEqual(len(params), 4)

    #  sublayers = mlp.sublayers(True)
    #  self.assertEqual(mlp._fc1, sublayers[0])
    #  self.assertEqual(mlp._fc2, sublayers[1])
    #  self.assertEqual(len(sublayers), 2)

    #  def test_rnn(self):
    #  np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
    #  [10.0, 11.0, 12.0]])
    #  np_inp = np_inp.reshape((1, 4, 3))
    #  np_inp = np_inp.astype(np.float32)
    #  with fluid.imperative.guard():
    #  var_inp = fluid.imperative.base.to_variable(np_inp)
    #  var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
    #  simple_rnn = SimpleRNN("simple_rnn")
    #  outs, pre_hiddens = simple_rnn.forward(var_inp)
    #  dy_out = outs[3]._numpy()
    #  outs[3]._backward()
    #  dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
    #  dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
    #  dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()

    #  with new_program_scope():
    #  inp = fluid.layers.data(
    #  name="inp", shape=[1, 4, 3], append_batch_size=False)
    #  simple_rnn = SimpleRNN("simple_rnn")
    #  outs, pre_hiddens = simple_rnn(inp)
    #  param_grads = fluid.backward.append_backward(outs[3])
    #  exe = fluid.Executor(fluid.CPUPlace())
    #  exe.run(fluid.default_startup_program())
    #  static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
    #  feed={inp.name: np_inp},
    #  fetch_list=[
    #  outs[3].name, param_grads[0][1].name,
    #  param_grads[1][1].name, param_grads[2][1].name
    #  ])
    #  self.assertTrue(np.allclose(dy_out, static_out))
    #  self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
    #  self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
    #  self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
J
JiabinYang 已提交
385

386 387 388

if __name__ == '__main__':
    unittest.main()