linear.py 2.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15

16 17 18
from paddle.nn import Layer
from paddle.nn import functional as F

19 20
from ..format import ConvertibleQuantedLayer

21

22
class QuantedLinear(ConvertibleQuantedLayer):
23
    """
24
    The computational logic of QuantizedLinear is the same as Linear.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    The only difference is that its inputs are all fake quantized.
    """

    def __init__(self, layer: Layer, q_config):
        super(QuantedLinear, self).__init__()
        # For Linear
        self.weight = getattr(layer, 'weight')
        self.bias = getattr(layer, 'bias')
        self.name = getattr(layer, 'name')
        # For FakeQuant

        self.weight_quanter = None
        self.activation_quanter = None
        if q_config.weight is not None:
            self.weight_quanter = q_config.weight._instance(layer)
        if q_config.activation is not None:
            self.activation_quanter = q_config.activation._instance(layer)

    def forward(self, input):
        quant_input = input
        quant_weight = self.weight
        if self.activation_quanter is not None:
            quant_input = self.activation_quanter(input)
        if self.weight_quanter is not None:
            quant_weight = self.weight_quanter(self.weight)
        return self._linear_forward(quant_input, quant_weight)

    def _linear_forward(self, input, weight):
        out = F.linear(x=input, weight=weight, bias=self.bias, name=self.name)
        return out
55 56 57 58 59 60

    def weights_to_quanters(self):
        return [('weight', 'weight_quanter')]

    def activation_quanters(self):
        return ['activation_quanter']