test_where_op.py 14.7 KB
Newer Older
1 2
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
# 
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
# 
9 10 11 12 13 14 15 16 17
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
G
GaoWei8 已提交
18
import paddle
19 20 21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.op import Operator
from paddle.fluid.backward import append_backward
26
from paddle.fluid.framework import _test_eager_guard
27 28 29 30


class TestWhereOp(OpTest):
    def setUp(self):
31
        self.op_type = 'where'
32 33 34 35 36
        self.init_config()
        self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y}
        self.outputs = {'Out': np.where(self.cond, self.x, self.y)}

    def test_check_output(self):
37
        self.check_output(check_eager=True)
38 39

    def test_check_grad(self):
40
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
41 42

    def init_config(self):
43 44 45
        self.x = np.random.uniform((-3), 5, 100).astype('float64')
        self.y = np.random.uniform((-3), 5, 100).astype('float64')
        self.cond = np.zeros(100).astype('bool')
46 47 48 49


class TestWhereOp2(TestWhereOp):
    def init_config(self):
50 51 52
        self.x = np.random.uniform((-5), 5, (60, 2)).astype('float64')
        self.y = np.random.uniform((-5), 5, (60, 2)).astype('float64')
        self.cond = np.ones((60, 2)).astype('bool')
53 54 55 56


class TestWhereOp3(TestWhereOp):
    def init_config(self):
57 58
        self.x = np.random.uniform((-3), 5, (20, 2, 4)).astype('float64')
        self.y = np.random.uniform((-3), 5, (20, 2, 4)).astype('float64')
59 60 61 62
        self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool)


class TestWhereAPI(unittest.TestCase):
G
GaoWei8 已提交
63 64
    def setUp(self):
        self.init_data()
65

G
GaoWei8 已提交
66 67 68
    def init_data(self):
        self.shape = [10, 15]
        self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool)
69 70
        self.x = np.random.uniform((-2), 3, self.shape).astype(np.float32)
        self.y = np.random.uniform((-2), 3, self.shape).astype(np.float32)
G
GaoWei8 已提交
71
        self.out = np.where(self.cond, self.x, self.y)
72

G
GaoWei8 已提交
73
    def ref_x_backward(self, dout):
74
        return np.where((self.cond == True), dout, 0)
G
GaoWei8 已提交
75 76

    def ref_y_backward(self, dout):
77
        return np.where((self.cond == False), dout, 0)
G
GaoWei8 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    def test_api(self, use_cuda=False):
        for x_stop_gradient in [False, True]:
            for y_stop_gradient in [False, True]:
                with fluid.program_guard(Program(), Program()):
                    cond = fluid.layers.data(
                        name='cond', shape=self.shape, dtype='bool')
                    x = fluid.layers.data(
                        name='x', shape=self.shape, dtype='float32')
                    y = fluid.layers.data(
                        name='y', shape=self.shape, dtype='float32')
                    x.stop_gradient = x_stop_gradient
                    y.stop_gradient = y_stop_gradient
                    result = paddle.where(cond, x, y)
                    append_backward(layers.mean(result))
                    for use_cuda in [False, True]:
94 95
                        if (use_cuda and
                            (not fluid.core.is_compiled_with_cuda())):
G
GaoWei8 已提交
96
                            break
97 98
                        place = (fluid.CUDAPlace(0)
                                 if use_cuda else fluid.CPUPlace())
G
GaoWei8 已提交
99 100
                        exe = fluid.Executor(place)
                        fetch_list = [result, result.grad_name]
101
                        if (x_stop_gradient is False):
G
GaoWei8 已提交
102
                            fetch_list.append(x.grad_name)
103
                        if (y_stop_gradient is False):
G
GaoWei8 已提交
104 105 106 107 108 109 110 111
                            fetch_list.append(y.grad_name)
                        out = exe.run(
                            fluid.default_main_program(),
                            feed={'cond': self.cond,
                                  'x': self.x,
                                  'y': self.y},
                            fetch_list=fetch_list)
                        assert np.array_equal(out[0], self.out)
112
                        if (x_stop_gradient is False):
G
GaoWei8 已提交
113 114
                            assert np.array_equal(out[2],
                                                  self.ref_x_backward(out[1]))
115
                            if (y.stop_gradient is False):
G
GaoWei8 已提交
116 117
                                assert np.array_equal(
                                    out[3], self.ref_y_backward(out[1]))
118
                        elif (y.stop_gradient is False):
G
GaoWei8 已提交
119 120
                            assert np.array_equal(out[2],
                                                  self.ref_y_backward(out[1]))
121 122 123 124 125 126

    def test_api_broadcast(self, use_cuda=False):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32')
127 128 129 130
            x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype('float32')
            y_i = np.array(
                [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]).astype('float32')
            result = paddle.where((x > 1), x=x, y=y)
131
            for use_cuda in [False, True]:
132
                if (use_cuda and (not fluid.core.is_compiled_with_cuda())):
133
                    return
134
                place = (fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace())
135 136 137 138 139
                exe = fluid.Executor(place)
                out = exe.run(fluid.default_main_program(),
                              feed={'x': x_i,
                                    'y': y_i},
                              fetch_list=[result])
140
                assert np.array_equal(out[0], np.where((x_i > 1), x_i, y_i))
141

142 143 144 145 146 147 148 149
    def __test_where_with_broadcast_static(self, cond_shape, x_shape, y_shape):
        paddle.enable_static()
        main_program = Program()
        with fluid.program_guard(main_program):
            cond = fluid.layers.data(
                name='cond', shape=cond_shape, dtype='bool')
            x = fluid.layers.data(name='x', shape=x_shape, dtype='float32')
            y = fluid.layers.data(name='y', shape=y_shape, dtype='float32')
150 151 152 153
            cond_data_tmp = np.random.random(size=cond_shape).astype('float32')
            cond_data = (cond_data_tmp < 0.3)
            x_data = np.random.random(size=x_shape).astype('float32')
            y_data = np.random.random(size=y_shape).astype('float32')
154 155
            result = paddle.where(condition=cond, x=x, y=y)
            for use_cuda in [False, True]:
156
                if (use_cuda and (not fluid.core.is_compiled_with_cuda())):
157
                    return
158
                place = (fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace())
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
                exe = fluid.Executor(place)
                out = exe.run(
                    fluid.default_main_program(),
                    feed={'cond': cond_data,
                          'x': x_data,
                          'y': y_data},
                    fetch_list=[result])
                expect = np.where(cond_data, x_data, y_data)
                assert np.array_equal(out[0], expect)

    def test_static_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

217 218 219 220

class TestWhereDygraphAPI(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
221 222 223
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float64')
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float64')
            cond_i = np.array([False, False, True, True]).astype('bool')
224 225 226
            x = fluid.dygraph.to_variable(x_i)
            y = fluid.dygraph.to_variable(y_i)
            cond = fluid.dygraph.to_variable(cond_i)
G
GaoWei8 已提交
227
            out = paddle.where(cond, x, y)
228 229
            assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))

230 231 232
    def __test_where_with_broadcast_dygraph(self, cond_shape, a_shape, b_shape):
        with fluid.dygraph.guard():
            cond_tmp = paddle.rand(cond_shape)
233
            cond = (cond_tmp < 0.3)
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
            a = paddle.rand(a_shape)
            b = paddle.rand(b_shape)
            result = paddle.where(cond, a, b)
            result = result.numpy()
            expect = np.where(cond, a, b)
            self.assertTrue(np.array_equal(expect, result))

    def test_dygraph_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

R
ronnywang 已提交
289 290 291
    def test_where_condition(self):
        data = np.array([[True, False], [False, True]])
        with program_guard(Program(), Program()):
292
            x = fluid.layers.data(name='x', shape=[(-1), 2])
R
ronnywang 已提交
293 294 295 296 297
            y = paddle.where(x)
            self.assertEqual(type(y), tuple)
            self.assertEqual(len(y), 2)
            z = fluid.layers.concat(list(y), axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
298 299 300
            (res, ) = exe.run(feed={'x': data},
                              fetch_list=[z.name],
                              return_numpy=False)
R
ronnywang 已提交
301 302 303 304
        expect_out = np.array([[0, 0], [1, 1]])
        self.assertTrue(np.allclose(expect_out, np.array(res)))
        data = np.array([True, True, False])
        with program_guard(Program(), Program()):
305
            x = fluid.layers.data(name='x', shape=[(-1)])
R
ronnywang 已提交
306 307 308 309 310
            y = paddle.where(x)
            self.assertEqual(type(y), tuple)
            self.assertEqual(len(y), 1)
            z = fluid.layers.concat(list(y), axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
311 312 313
            (res, ) = exe.run(feed={'x': data},
                              fetch_list=[z.name],
                              return_numpy=False)
R
ronnywang 已提交
314 315 316
        expect_out = np.array([[0], [1]])
        self.assertTrue(np.allclose(expect_out, np.array(res)))

317 318 319 320 321 322 323 324 325 326 327 328
    def test_eager(self):
        with _test_eager_guard():
            self.test_api()
            self.test_dygraph_api_broadcast_1()
            self.test_dygraph_api_broadcast_2()
            self.test_dygraph_api_broadcast_3()
            self.test_dygraph_api_broadcast_4()
            self.test_dygraph_api_broadcast_5()
            self.test_dygraph_api_broadcast_6()
            self.test_dygraph_api_broadcast_7()
            self.test_dygraph_api_broadcast_8()

329 330 331 332

class TestWhereOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
333 334 335
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float64')
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float64')
            cond_i = np.array([False, False, True, True]).astype('bool')
336 337

            def test_Variable():
G
GaoWei8 已提交
338
                paddle.where(cond_i, x_i, y_i)
339 340 341 342 343 344 345

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                x = fluid.layers.data(name='x', shape=[4], dtype='bool')
                y = fluid.layers.data(name='y', shape=[4], dtype='float16')
                cond = fluid.layers.data(name='cond', shape=[4], dtype='int32')
G
GaoWei8 已提交
346
                paddle.where(cond, x, y)
347 348 349

            self.assertRaises(TypeError, test_type)

R
ronnywang 已提交
350 351 352 353
    def test_value_error(self):
        with fluid.dygraph.guard():
            cond_shape = [2, 2, 4]
            cond_tmp = paddle.rand(cond_shape)
354
            cond = (cond_tmp < 0.3)
R
ronnywang 已提交
355 356 357
            a = paddle.rand(cond_shape)
            self.assertRaises(ValueError, paddle.where, cond, a)

358 359 360 361
    def test_eager(self):
        with _test_eager_guard():
            self.test_value_error()

362

363
if (__name__ == '__main__'):
364
    unittest.main()