mp_ops.py 27.8 KB
Newer Older
W
wuhuachaocoding 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
16
from paddle import _legacy_C_ops
17
from paddle.distributed import collective
W
wuhuachaocoding 已提交
18
from paddle.fluid import core
19
from paddle.fluid.data_feeder import check_dtype, check_variable_and_dtype
20
from paddle.framework import LayerHelper, _varbase_creator, in_dygraph_mode
W
wangxiaoning 已提交
21
from paddle.nn import Layer
22
from paddle.nn.utils import dygraph_utils
23

24
from ....communication.reduce import ReduceOp, _get_reduce_op
W
wuhuachaocoding 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


def _c_identity(tensor, group=None):
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

43 44 45 46 47 48
    if in_dygraph_mode():
        from paddle.autograd import PyLayer

        class c_identity_eager(PyLayer):
            @staticmethod
            def forward(ctx, tensor):
49
                return tensor
50 51 52

            @staticmethod
            def backward(ctx, dy):
53
                op_type = _get_reduce_op(ReduceOp.SUM, "_c_identity")
L
LiYuRio 已提交
54
                group.process_group.all_reduce_on_calc_stream(dy, op_type)
55 56 57
                return dy

        return c_identity_eager.apply(tensor)
58 59 60 61
    else:
        op_type = 'c_identity'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
62

63
        check_variable_and_dtype(
64
            tensor,
65 66 67
            'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            '_c_identity',
68 69
        )

70 71 72 73 74 75 76 77 78 79 80
        helper.append_op(
            type=op_type,
            inputs={'X': tensor},
            outputs={'Out': out},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            },
        )
        return out
W
wuhuachaocoding 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103


def _c_concat(tensor, group=None):
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    group = collective._get_default_group() if group is None else group
    ring_id = group.id

    global_rank = collective._get_global_env().rank
    rank = group.rank
    nranks = group.nranks

104
    if in_dygraph_mode():
105 106 107 108 109 110 111 112 113 114 115 116 117
        return _legacy_C_ops.c_concat(
            tensor,
            'ring_id',
            ring_id,
            'use_calc_stream',
            True,
            'rank',
            rank,
            'nranks',
            nranks,
            'use_model_parallel',
            True,
        )
118 119 120 121
    else:
        op_type = 'c_concat'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
W
wuhuachaocoding 已提交
122

123 124 125 126 127 128
        check_variable_and_dtype(
            tensor,
            'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            '_c_concat',
        )
129

130 131 132 133 134 135 136 137 138 139 140 141 142
        helper.append_op(
            type=op_type,
            inputs={'X': tensor},
            outputs={'Out': out},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': True,
                'use_model_parallel': True,
                'nranks': nranks,
                'rank': rank,
            },
        )
        return out
W
wuhuachaocoding 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163


def _c_split(tensor, group=None):
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    global_rank = collective._get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
164 165 166 167 168
    nranks = (
        collective._get_global_env().world_size
        if group is None
        else group.nranks
    )
W
wuhuachaocoding 已提交
169

170
    if in_dygraph_mode():
171 172 173 174 175 176 177 178 179 180 181 182 183
        return _legacy_C_ops.c_split(
            tensor,
            'use_calc_stream',
            True,
            'ring_id',
            ring_id,
            'rank',
            rank,
            'nranks',
            nranks,
            'use_model_parallel',
            True,
        )
184 185 186 187
    else:
        op_type = 'c_split'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
W
wuhuachaocoding 已提交
188

189 190 191 192 193 194
        check_variable_and_dtype(
            tensor,
            'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            '_c_split',
        )
195

196 197 198 199 200 201 202 203 204 205 206 207 208
        helper.append_op(
            type=op_type,
            inputs={'X': tensor},
            outputs={'Out': out},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': True,
                'rank': rank,
                'nranks': nranks,
                'use_model_parallel': True,
            },
        )
        return out
W
wuhuachaocoding 已提交
209 210


211 212 213 214 215 216 217 218
def _mp_allreduce(
    tensor,
    op=ReduceOp.SUM,
    group=None,
    use_calc_stream=True,
    use_model_parallel=True,
):
    """[it is same as allreduce above, but it supports model parallel. And it support inplace startegy]"""
W
wuhuachaocoding 已提交
219 220 221 222 223 224 225 226 227 228 229
    if group is not None and not group.is_member():
        return

    if in_dygraph_mode():
        group = collective._get_default_group() if group is None else group
        assert op == ReduceOp.SUM, "Unknown parameter: {}.".format(op)

        from paddle.autograd import PyLayer

        class mp_allreduce_eager(PyLayer):
            @staticmethod
230 231 232
            def forward(
                ctx, tensor, group, use_calc_stream, use_model_parallel
            ):
W
wuhuachaocoding 已提交
233 234 235
                ctx.ring_id = group.id

                if use_calc_stream:
236
                    op_type = _get_reduce_op(op, "_mp_allreduce")
L
LiYuRio 已提交
237
                    group.process_group.all_reduce_on_calc_stream(
238 239
                        tensor, op_type
                    )
W
wuhuachaocoding 已提交
240 241 242
                    return tensor
                else:
                    return _legacy_C_ops.c_allreduce_sum_(
243 244 245 246 247 248
                        tensor,
                        'use_calc_stream',
                        use_calc_stream,
                        'ring_id',
                        ring_id,
                    )
W
wuhuachaocoding 已提交
249 250 251

            @staticmethod
            def backward(ctx, dy):
252
                return dy
253 254 255 256

        return mp_allreduce_eager.apply(
            tensor, group, use_calc_stream, use_model_parallel
        )
257 258 259 260 261
    else:
        ring_id = 0 if group is None else group.id
        op_type = 'mp_allreduce_sum'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
W
wuhuachaocoding 已提交
262

263 264 265 266 267 268
        check_variable_and_dtype(
            tensor,
            'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            op_type,
        )
269

270 271 272 273 274 275 276 277 278 279
        helper.append_op(
            type=op_type,
            inputs={'X': tensor},
            outputs={'Out': out},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
            },
        )
        return out
W
wuhuachaocoding 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295


def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
296
    if in_dygraph_mode():
297 298 299
        return _legacy_C_ops.c_embedding(
            table, index, "start_index", start_index
        )
300 301 302 303 304 305 306 307 308 309 310 311 312
    else:
        op_type = 'c_embedding'
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='table')
        check_variable_and_dtype(index, 'input', ['int32', 'int64'], op_type)
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='c_embedding',
            inputs={'Ids': index, 'W': table},
            outputs={'Out': tmp},
            attrs={"start_index": start_index},
        )
        return tmp
W
wuhuachaocoding 已提交
313 314


W
wangxiaoning 已提交
315
class _Linear(Layer):
W
wuhuachaocoding 已提交
316 317 318 319
    """
    Linear
    """

320 321 322 323 324 325 326 327
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
328
        super().__init__()
W
wuhuachaocoding 已提交
329 330 331
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
332 333 334 335 336 337 338 339 340 341 342 343
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
W
wuhuachaocoding 已提交
344 345 346
        self.name = name

    def forward(self, input):
347 348 349
        out = _linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name
        )
W
wuhuachaocoding 已提交
350 351 352 353 354
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
355 356
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str
        )
W
wuhuachaocoding 已提交
357 358


359
def _c_softmax_with_cross_entropy(
360 361 362 363 364
    logits,
    label,
    group=None,
    return_softmax=False,
    ignore_index=-100,
365
):
W
wuhuachaocoding 已提交
366 367 368 369 370
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    global_rank = collective._get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
371 372 373 374 375
    nranks = (
        collective._get_global_env().world_size
        if group is None
        else group.nranks
    )
W
wuhuachaocoding 已提交
376 377 378 379 380

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
381 382
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
             (got input_dims{}, label_dims{})'.format(
383 384 385
                input_dims, label_dims
            )
        )
W
wuhuachaocoding 已提交
386 387 388
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

389
    if in_dygraph_mode():
W
wuhuachaocoding 已提交
390
        softmax, loss = _legacy_C_ops.c_softmax_with_cross_entropy(
391 392 393 394 395 396 397 398 399 400
            logits,
            label,
            'ring_id',
            ring_id,
            'rank',
            rank,
            'nranks',
            nranks,
            'ignore_index',
            ignore_index,
401
        )
W
wuhuachaocoding 已提交
402 403 404 405
        if not return_softmax:
            return loss
        else:
            return loss, softmax
406 407 408 409 410
    else:
        attrs = {
            'ring_id': ring_id,
            'rank': rank,
            'nranks': nranks,
411
            'ignore_index': ignore_index,
412 413 414 415 416 417 418 419 420 421
        }
        helper = LayerHelper('c_softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
        helper.append_op(
            type='c_softmax_with_cross_entropy',
            inputs={'Logits': logits, 'Label': label},
            outputs={'Softmax': softmax, 'Loss': loss},
            attrs=attrs,
        )
W
wuhuachaocoding 已提交
422

423 424
        if return_softmax:
            return loss, softmax
W
wuhuachaocoding 已提交
425

426
        return loss
W
wuhuachaocoding 已提交
427 428 429 430 431 432


def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
433
    if in_dygraph_mode():
W
wuhuachaocoding 已提交
434
        pre_bias = _varbase_creator(dtype=x.dtype)
435 436 437 438 439 440 441 442 443 444 445 446 447 448
        _legacy_C_ops.matmul(
            x,
            weight,
            pre_bias,
            'transpose_X',
            False,
            'transpose_Y',
            False,
            "alpha",
            1,
        )
        return dygraph_utils._append_bias_in_dygraph(
            pre_bias, bias, axis=len(x.shape) - 1
        )
W
wuhuachaocoding 已提交
449 450 451
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
452 453 454
        assert (
            len(x.shape) < 4
        ), "X latitude is not supported greater than 3 now."
W
wuhuachaocoding 已提交
455

456 457 458
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'linear'
        )
W
wuhuachaocoding 已提交
459 460 461 462 463 464 465 466 467
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
468 469 470
        helper.append_op(
            type='matmul_v2', inputs=inputs, outputs={'Out': tmp}, attrs=attrs
        )
W
wuhuachaocoding 已提交
471 472
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
473 474 475 476 477 478
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1},
            )
W
wuhuachaocoding 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        else:
            res = tmp
        return res


def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


497 498 499 500 501 502 503 504 505 506 507 508 509 510
def _parallel_linear(
    x,
    num_rows,
    num_cols,
    axis,
    param_attr,
    bias_attr,
    gather_out,
    inner_rank,
    nranks,
    split_tensor,
    name,
    group=None,
):
W
wuhuachaocoding 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    """
    Parallel Linear

    axis the dimension of the parameter of linear layer.
    axis = 0: the row dimension
    axis = 1: the col dimension

    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if axis == 0:
        if split_tensor:
            x = _c_split(x, group=group)
    else:
        x = _c_identity(x, group=group)

529 530 531 532 533 534 535
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name,
    )
W
wuhuachaocoding 已提交
536 537

    # NOTE: npu linear function use matmul_v2 but linear use matmul
538 539 540
    linear_function = (
        _linear if core.is_compiled_with_npu() else paddle.nn.functional.linear
    )
W
wuhuachaocoding 已提交
541 542 543 544 545
    linear_out = linear_function(
        x,
        linear.weight,
        # NOTE(wangxi): row split, bias need add after allreduce
        None if axis == 0 else linear.bias,
546 547
        linear.name,
    )
W
wuhuachaocoding 已提交
548 549 550 551 552

    _set_var_distributed(linear.weight)
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
553
    if axis == 1 and linear._bias_attr is not False:
W
wuhuachaocoding 已提交
554 555
        _set_var_distributed(linear.bias)

556 557
    if not gather_out:
        return linear_out
W
wuhuachaocoding 已提交
558 559 560 561 562 563 564 565 566 567 568

    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
    main_block = paddle.static.default_main_program().current_block()
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
569 570
        need_check_feed=linear_out.desc.need_check_feed(),
    )
W
wuhuachaocoding 已提交
571
    if axis == 0:
572
        main_block.append_op(
L
LiYuRio 已提交
573
            type='mp_allreduce_sum',
574 575 576 577 578 579 580
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': True,
            },
        )
W
wuhuachaocoding 已提交
581 582 583
        if linear.bias is not None:
            out = out + linear.bias
    else:
584 585 586 587 588 589 590 591 592 593 594 595
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
                'rank': inner_rank,
                'ring_id': ring_id,
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True,
            },
        )
W
wuhuachaocoding 已提交
596 597 598
    return out


599 600 601 602 603 604 605 606 607 608
def _parallel_embedding(
    x,
    per_part_embeddings,
    origin_size,
    param_attr,
    inner_rank,
    num_partitions,
    name,
    group=None,
):
W
wuhuachaocoding 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    """
    Parallel Embedding
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    helper = LayerHelper("_parallel_embedding", **locals())

    per_part_size = per_part_embeddings
    rank = inner_rank

    vocab_start_index = rank * per_part_size
    dtype = helper.get_default_dtype()
    size = [per_part_size, origin_size[1]]

625 626 627
    weight = helper.create_parameter(
        attr=param_attr, shape=size, dtype=dtype, is_bias=False
    )
W
wuhuachaocoding 已提交
628 629

    if num_partitions == 1:
630 631 632
        return paddle.nn.functional.embedding(
            x, weight=weight, padding_idx=None, sparse=False, name=name
        )
W
wuhuachaocoding 已提交
633 634 635 636 637 638

    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
    startup_block.vars[weight.name].is_distributed = True
    main_block.vars[weight.name].is_distributed = True

639 640 641 642 643 644 645 646 647
    output_parallel = _c_lookup_table(
        weight, x, start_index=vocab_start_index, name=name
    )
    out = _mp_allreduce(
        output_parallel,
        group=group,
        use_calc_stream=True,
        use_model_parallel=True,
    )
W
wuhuachaocoding 已提交
648 649 650
    return out


651 652 653 654 655 656 657 658 659 660 661
def split(
    x,
    size,
    operation,
    axis=0,
    num_partitions=1,
    gather_out=True,
    weight_attr=None,
    bias_attr=None,
    name=None,
):
W
wuhuachaocoding 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.

        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

        The Embedding put on single card is as shown below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_single.png
            :width: 800
            :height: 350
            :alt: single_embedding
            :align: center

        Parallel Embedding is shown as below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_split.png
            :width: 800
            :alt: split_embedding
            :align: center

    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

        The linear layer put on single card is shown as below, the input variable is represented by X,
        the weight matrix is represented by W and the output vaiable is O. The linear layer on single card is
        simple matrix multiplication operation, O = X * W.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_single.png
            :width: 800
            :alt: single_linear
            :align: center

        Row Parallel Linear is shown as below. As the name suggests, Row Parallel Linear splits the weight matrix W into
        [[W_row1], [W_row2]] along the row. And accordingly the input is splitted along the column into [X_col1, X_col2] and multiply their
        respective weight matrices. Finally apply AllReduce on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_row.png
            :width: 800
            :alt: split_row
            :align: center

    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

        The linear layer put on single card has been illustrated on case 2 and Column Parallel Linear
        is shown as below. The Column Parallel Linear splits the weight matrix W into [W_col1, W_col2] along the column and
        these splitted matrices respectively multiply the input. Finally apply AllGather on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col.png
            :width: 800
            :alt: split_col
            :align: center

    As observed, the column parallel linear and row parallel linear can be combined to skip one ALLGATHER communication
    operator. Furthermore the Attention and MLP can be combined to imporve the performance as shown below.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col_row.png
            :width: 800
            :alt: split_col_row
            :align: center

    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed.fleet as fleet

            paddle.enable_static()
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            fleet.init(is_collective=True)
            data = paddle.randint(0, 8, shape=[10,4])
            emb_out = paddle.distributed.split(
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)

    """
780 781 782 783 784 785 786 787 788 789
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple."
    )
    assert len(size) == 2, (
        "Number of elements in size of " "paddle.distributed.split must be two."
    )
    assert isinstance(operation, str), (
        "The type of operation for " "paddle.distributed.split must be str."
    )
W
wuhuachaocoding 已提交
790 791 792 793 794 795 796
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
797 798 799
            supported_operations
        )
    )
800
    if in_dygraph_mode():
W
wuhuachaocoding 已提交
801 802 803
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
804 805
            "ParallelColumnLinear instead."
        )
W
wuhuachaocoding 已提交
806 807
    else:
        from paddle.distributed.fleet import fleet
808 809 810 811 812

        assert fleet._role_maker, (
            "To use paddle.distributed.split, "
            "you must call fleet.init() firstly."
        )
W
wuhuachaocoding 已提交
813 814 815 816 817 818 819
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
820 821 822 823 824 825 826 827 828 829
        assert axis == 0, (
            "We only support to split the weight of embedding "
            "along the first axis now."
        )
        assert size[0] % num_partitions == 0, (
            "The length of the vocabulary must be divisible by num_partitions "
            "but received vocabulary={} num_partitions={}".format(
                size[0], num_partitions
            )
        )
W
wuhuachaocoding 已提交
830 831

        per_part_size = size[0] // num_partitions
832 833 834 835 836 837 838 839 840 841
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
            group=None,
        )
W
wuhuachaocoding 已提交
842 843 844 845 846 847 848
        return emb_out
    else:
        should_split = False
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(
849 850 851
                    size[0], num_partitions
                )
            )
W
wuhuachaocoding 已提交
852 853
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
854 855
            if x.shape[-1] == size[0]:
                should_split = True
W
wuhuachaocoding 已提交
856 857 858 859 860

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(
861 862 863
                    size[1], num_partitions
                )
            )
W
wuhuachaocoding 已提交
864 865 866
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
            raise ValueError(
                "The value of axis must be 0 or 1, but the value "
                "given is {}.".format(axis)
            )

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
            num_partitions,
            should_split,
            name=name,
            group=None,
        )
W
wuhuachaocoding 已提交
886
        return linear_out