test_LayerGrad.cpp 75.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef PADDLE_WITH_CUDA
16
#include <cudnn.h>
W
wanghaoshuang 已提交
17
#endif
Z
zhangjinchao01 已提交
18 19
#include <gtest/gtest.h>
#include <string>
Q
qijun 已提交
20
#include <vector>
Z
zhangjinchao01 已提交
21
#include "ModelConfig.pb.h"
Q
qijun 已提交
22
#include "paddle/gserver/layers/DataLayer.h"
23
#include "paddle/math/MathUtils.h"
Z
zhangjinchao01 已提交
24 25

#include "LayerGradUtil.h"
26
#include "paddle/testing/TestUtil.h"
Z
zhangjinchao01 已提交
27 28 29 30

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

31 32 33 34 35
DECLARE_bool(use_gpu);
DECLARE_int32(gpu_id);
DECLARE_double(checkgrad_eps);
DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_bool(prev_batch_state);
Z
zhangjinchao01 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

TEST(Operator, dot_mul) {
  TestConfig config;
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  OperatorConfig& operatorConf = *config.layerConfig.add_operator_confs();
  operatorConf.set_type("dot_mul");
  operatorConf.set_dotmul_scale(-1);

  testOperatorGrad(config, operatorConf, 100, false, false);
}

TEST(Projection, context) {
  for (auto contextStart : {-5, -3, -1, 0, 3}) {
    for (auto contextLength : {1, 2, 5, 7}) {
56
      for (auto batchSize : {1, 2, 5, 20, 50}) {
Z
zhangjinchao01 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
        for (auto trainablePadding : {false, true}) {
          LOG(INFO) << " contextStart=" << contextStart
                    << " contextLength=" << contextLength
                    << " batchSize=" << batchSize
                    << " trainablePadding=" << trainablePadding;
          ProjectionConfig conf;
          conf.set_type("context");
          conf.set_input_size(10);
          conf.set_context_start(contextStart);
          conf.set_context_length(contextLength);
          conf.set_trainable_padding(trainablePadding);
          conf.set_output_size(conf.context_length() * conf.input_size());
          int pad =
              std::max(0, -conf.context_start()) +
              std::max(0, conf.context_start() + conf.context_length() - 1);
          for (auto useGpu : {false, true}) {
            testProjectionGrad(
74 75 76 77
                conf,
                INPUT_SEQUENCE_DATA,
                trainablePadding ? conf.input_size() * pad : 0,
                batchSize,
Z
zhangjinchao01 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
                useGpu,
                contextStart + contextLength <= 1);  // = testState
          }
        }
      }
    }
  }
}

TEST(Projection, trans_fc) {
  ProjectionConfig conf;
  conf.set_type("trans_fc");
  conf.set_input_size(50);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
93 94 95 96 97
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 1000,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
98 99 100 101 102 103 104 105 106
  }
}

TEST(Projection, fc) {
  ProjectionConfig conf;
  conf.set_type("fc");
  conf.set_input_size(10);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
107 108 109 110 111
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 200,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
112 113 114 115 116 117 118 119 120
  }
}

TEST(Projection, dot_mul) {
  ProjectionConfig conf;
  conf.set_type("dot_mul");
  conf.set_input_size(20);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
121 122 123 124 125
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 20,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
126 127 128 129 130 131 132 133 134
  }
}

TEST(Projection, table) {
  ProjectionConfig conf;
  conf.set_type("table");
  conf.set_input_size(10);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
135 136 137 138 139
    testProjectionGrad(conf,
                       INPUT_LABEL,
                       /* parameterSize */ 200,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
140 141 142 143 144 145 146 147 148
  }
}

TEST(Projection, identity) {
  ProjectionConfig conf;
  conf.set_type("identity");
  conf.set_input_size(10);
  conf.set_output_size(10);
  for (auto useGpu : {false, true}) {
149 150 151 152 153
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 0,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
154 155 156
  }
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
TEST(Projection, slice) {
  ProjectionConfig conf;
  conf.set_type("slice");
  conf.set_input_size(100);
  SliceConfig& slice1 = *conf.add_slices();
  slice1.set_start(10);
  slice1.set_end(20);
  SliceConfig& slice2 = *conf.add_slices();
  slice2.set_start(50);
  slice2.set_end(70);
  conf.set_output_size(30);
  for (auto useGpu : {false, true}) {
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 0,
                       /* batchSize */ 10,
                       useGpu);
  }
}

X
xuwei06 已提交
177 178 179 180 181 182
TEST(Projection, scaling) {
  ProjectionConfig conf;
  conf.set_type("scaling");
  conf.set_input_size(10);
  conf.set_output_size(10);
  for (auto useGpu : {false}) {
183 184 185 186 187
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 1,
                       /* batchSize */ 100,
                       useGpu);
X
xuwei06 已提交
188 189 190
  }
}

W
wangyang59 已提交
191
void testProjectionConv(size_t groups, bool isDeconv) {
192
  const int NUM_FILTERS = 18;
193
  const int FILTER_SIZE = 2;
194
  const int FILTER_SIZE_Y = 2;
195 196 197
  const int CHANNELS = 3;
  const int IMAGE_SIZE = 16;

198 199 200 201 202 203
#if CUDNN_VERSION >= 6000
  const int DILATION = 2;
#else
  const int DILATION = 1;
#endif

204
  ProjectionConfig conf;
W
wangyang59 已提交
205 206 207 208 209
  if (isDeconv) {
    conf.set_type("convt");
  } else {
    conf.set_type("conv");
  }
210 211 212 213 214 215 216 217 218 219
  conf.set_num_filters(NUM_FILTERS);

  ConvConfig* conv = conf.mutable_conv_conf();
  conv->set_filter_size(FILTER_SIZE);
  conv->set_filter_size_y(FILTER_SIZE_Y);
  conv->set_channels(CHANNELS);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
220 221
  conv->set_dilation(DILATION);
  conv->set_dilation_y(DILATION);
222
  conv->set_groups(groups);
W
wangyang59 已提交
223 224 225 226 227
  if (isDeconv) {
    conv->set_filter_channels(NUM_FILTERS / conv->groups());
  } else {
    conv->set_filter_channels(conv->channels() / conv->groups());
  }
228
  conv->set_img_size(IMAGE_SIZE);
229
  int output_x = outputSize(conv->img_size(),
230
                            (conv->filter_size() - 1) * DILATION + 1,
231 232 233 234
                            conv->padding(),
                            conv->stride(),
                            /* caffeMode */ true);
  int output_y = outputSize(conv->img_size(),
235
                            (conv->filter_size_y() - 1) * DILATION + 1,
236 237 238
                            conv->padding_y(),
                            conv->stride_y(),
                            /* caffeMode */ true);
239
  conv->set_output_x(output_x);
W
wangyang59 已提交
240 241 242 243 244 245 246 247
  conv->set_output_y(output_y);
  if (isDeconv) {
    conf.set_input_size(output_x * output_y * CHANNELS);
    conf.set_output_size(IMAGE_SIZE * IMAGE_SIZE * NUM_FILTERS);
  } else {
    conf.set_input_size(IMAGE_SIZE * IMAGE_SIZE * CHANNELS);
    conf.set_output_size(output_x * output_y * NUM_FILTERS);
  }
248

L
Luo Tao 已提交
249 250 251 252 253 254 255 256 257
  testProjectionGrad(conf,
                     INPUT_DATA,
                     /* parameterSize */ NUM_FILTERS * CHANNELS * FILTER_SIZE *
                         FILTER_SIZE_Y / groups,
                     /* batchSize */ 100,
                     true,
                     false,
                     NUM_FILTERS,
                     true);
258
}
259

260
#ifdef PADDLE_WITH_CUDA
261
TEST(Projection, conv) {
W
wangyang59 已提交
262 263 264 265 266 267
  /// test ConvProjection
  testProjectionConv(1, false);
  testProjectionConv(3, false);
  /// test ConvTransProjection
  testProjectionConv(1, true);
  testProjectionConv(3, true);
268
}
269 270
#endif

L
Update  
liaogang 已提交
271 272 273 274 275 276
TEST(Layer, BilinearInterpLayer) {
  TestConfig config;
  config.layerConfig.set_type("bilinear_interp");
  config.biasSize = 0;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 4096, 0});

L
liaogang 已提交
277 278
  LayerInputConfig* input = config.layerConfig.add_inputs();
  BilinearInterpConfig* bilinear = input->mutable_bilinear_interp_conf();
L
Luo Tao 已提交
279 280 281 282
  ImageConfig* image = bilinear->mutable_image_conf();
  image->set_img_size(32);
  image->set_img_size_y(32);
  image->set_channels(4);
L
liaogang 已提交
283

L
liaogang 已提交
284 285 286 287 288 289 290
  for (auto useGpu : {false, true}) {
    for (auto outSize : {32, 64}) {
      bilinear->set_out_size_x(outSize);
      bilinear->set_out_size_y(outSize);
      testLayerGrad(config, "bilinear_interp", 10, false, useGpu);
    }
  }
L
Update  
liaogang 已提交
291 292
}

Z
zhangjinchao01 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
TEST(Layer, concat) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("concat");
  config.layerConfig.set_size(15);
  config.layerConfig.set_active_type("sigmoid");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "concat", 100, false, useGpu);
  }
}

TEST(Layer, AddtoLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("addto");
  config.layerConfig.set_size(10);
  config.layerConfig.set_active_type("sigmoid");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "addto", 100, false, useGpu);
  }
}

TEST(Layer, CTCLayer) {
  TestConfig config;
  config.layerConfig.set_type("ctc");
  config.layerConfig.set_norm_by_times(false);
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_SEQUENCE_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
340 341 342 343 344
    testLayerGrad(config,
                  "ctc",
                  100,
                  /* trans */ false, /* useGpu */
                  useGpu);
Z
zhangjinchao01 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  }
}

TEST(Layer, cosSimLayer) {
  TestConfig config;
  config.layerConfig.set_type("cos");
  config.layerConfig.set_size(1);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "cos", 100, false, useGpu);
  }
}

TEST(Layer, CosSimVecMatLayer) {
  TestConfig config;
  config.layerConfig.set_type("cos_vm");
  config.layerConfig.set_size(5);  // output size
  config.layerConfig.set_cos_scale(2.0);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 20, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 100, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "cos_vm", 100, false, useGpu);
  }
}

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
void testDepthwiseConvLayer(const string& type, bool useGpu) {
  TestConfig config;
  config.biasSize = 32;
  config.layerConfig.set_type(type);
  config.layerConfig.set_num_filters(32);
  config.layerConfig.set_partial_sum(1);
  config.layerConfig.set_shared_biases(true);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 2048, 192});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_filter_size(2);
  conv->set_filter_size_y(3);
  conv->set_channels(16);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_groups(16);
  conv->set_filter_channels(conv->channels() / conv->groups());
  conv->set_img_size(16);
  conv->set_img_size_y(8);
  conv->set_output_x(outputSize(conv->img_size(),
                                conv->filter_size(),
                                conv->padding(),
                                conv->stride(),
                                /* caffeMode */ true));
  conv->set_output_y(outputSize(conv->img_size_y(),
                                conv->filter_size_y(),
                                conv->padding_y(),
                                conv->stride_y(),
                                /* caffeMode */ true));
  config.layerConfig.set_size(conv->output_x() * conv->output_y() *
                              config.layerConfig.num_filters());

  testLayerGrad(config, "depthwise_conv", 100, false, useGpu);
  // Use small batch_size and useWeight=true to test biasGrad
  testLayerGrad(config, "depthwise_conv", 2, false, useGpu, true, 0.02);
}

TEST(Layer, depthwiseConvLayer) {
  //  'depthwise_conv' is a sepecial case of 'exconv' whose
  //  groups size equals to the input channels size.
  testDepthwiseConvLayer("exconv", /* useGpu= */ false);
424
#ifdef PADDLE_WITH_CUDA
425 426 427 428
  testDepthwiseConvLayer("exconv", /* useGpu= */ true);
#endif
}

Z
zhangjinchao01 已提交
429 430 431 432 433 434 435 436
void testConvLayer(const string& type, bool trans, bool useGpu) {
  TestConfig config;
  config.biasSize = 16;
  config.layerConfig.set_type(type);
  config.layerConfig.set_num_filters(16);
  config.layerConfig.set_partial_sum(1);
  config.layerConfig.set_shared_biases(true);

437 438 439 440 441 442 443 444 445 446
  int dilation = 1;
  if (type == "cudnn_conv") {
#if CUDNN_VERSION >= 6000
    dilation = 2;
#else
    dilation = 1;
#endif
  }

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 768, 192});
Z
zhangjinchao01 已提交
447 448 449
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_filter_size(2);
450
  conv->set_filter_size_y(2);
Z
zhangjinchao01 已提交
451 452 453 454 455
  conv->set_channels(3);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
456 457
  conv->set_dilation(dilation);
  conv->set_dilation_y(dilation);
Z
zhangjinchao01 已提交
458 459 460
  conv->set_groups(1);
  conv->set_filter_channels(conv->channels() / conv->groups());
  conv->set_img_size(16);
461
  conv->set_img_size_y(16);
462
  conv->set_output_x(outputSize(conv->img_size(),
463
                                (conv->filter_size() - 1) * dilation + 1,
464 465
                                conv->padding(),
                                conv->stride(),
466
                                /* caffeMode */ true));
L
Luo Tao 已提交
467
  conv->set_output_y(outputSize(conv->img_size_y(),
468
                                (conv->filter_size_y() - 1) * dilation + 1,
L
Luo Tao 已提交
469 470
                                conv->padding_y(),
                                conv->stride_y(),
L
Luo Tao 已提交
471 472
                                /* caffeMode */ true));
  config.layerConfig.set_size(conv->output_x() * conv->output_y() *
Z
zhangjinchao01 已提交
473 474 475
                              config.layerConfig.num_filters());

  testLayerGrad(config, "conv", 100, trans, useGpu);
476 477
  // Use small batch_size and useWeight=true to test biasGrad
  testLayerGrad(config, "conv", 2, trans, useGpu, true, 0.02);
Z
zhangjinchao01 已提交
478 479 480 481
}

TEST(Layer, convLayer) {
  testConvLayer("exconv", /* trans= */ false, /* useGpu= */ false);
482
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
483 484 485 486 487
  testConvLayer("exconv", /* trans= */ false, /* useGpu= */ true);
  testConvLayer("cudnn_conv", /* trans= */ false, /* useGpu= */ true);
#endif
}

W
wangyang59 已提交
488 489 490 491 492 493 494 495
void testConvTransLayer(const string& type, bool trans, bool useGpu) {
  TestConfig config;
  config.biasSize = 3;
  config.layerConfig.set_type(type);
  config.layerConfig.set_num_filters(3);
  config.layerConfig.set_partial_sum(1);
  config.layerConfig.set_shared_biases(true);

W
wangyang59 已提交
496
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 384});
W
wangyang59 已提交
497 498 499
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_filter_size(2);
W
wangyang59 已提交
500
  conv->set_filter_size_y(4);
W
wangyang59 已提交
501 502 503 504 505 506 507 508
  conv->set_channels(16);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_groups(1);
  conv->set_filter_channels(3 / conv->groups());
  conv->set_img_size(16);
509 510 511 512
  conv->set_output_x(outputSize(conv->img_size(),
                                conv->filter_size(),
                                conv->padding(),
                                conv->stride(),
513
                                /* caffeMode */ true));
W
wangyang59 已提交
514 515 516 517 518

  config.layerConfig.set_size(conv->img_size() * conv->img_size() *
                              config.layerConfig.num_filters());

  testLayerGrad(config, "convTrans", 100, trans, useGpu);
519 520
  // Use small batch_size and useWeight=true to test biasGrad
  testLayerGrad(config, "convTrans", 2, trans, useGpu, true, 0.02);
W
wangyang59 已提交
521 522 523
}

TEST(Layer, convTransLayer) {
524 525 526
  for (auto useGpu : {false, true}) {
    testConvTransLayer("exconvt", /* trans= */ false, /* useGpu= */ useGpu);
  }
527
#ifdef PADDLE_WITH_CUDA
W
wangyang59 已提交
528 529
  testConvTransLayer("cudnn_convt", /* trans= */ false, /* useGpu= */ true);
#endif
W
wangyang59 已提交
530 531
}

Z
zhangjinchao01 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
TEST(Layer, blockExpandLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("blockexpand");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 6144, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  BlockExpandConfig* blockExpand = input->mutable_block_expand_conf();
  blockExpand->set_img_size_x(64);
  blockExpand->set_img_size_y(32);
  blockExpand->set_channels(3);
  blockExpand->set_padding_x(0);
  blockExpand->set_padding_y(0);
  blockExpand->set_block_x(4);
  blockExpand->set_block_y(32);
  blockExpand->set_stride_x(2);
  blockExpand->set_stride_y(2);
549 550 551 552 553 554 555 556 557 558
  blockExpand->set_output_x(outputSize(blockExpand->img_size_x(),
                                       blockExpand->block_x(),
                                       blockExpand->padding_x(),
                                       blockExpand->stride_x(),
                                       /* caffeMode */ false));
  blockExpand->set_output_y(outputSize(blockExpand->img_size_y(),
                                       blockExpand->block_y(),
                                       blockExpand->padding_y(),
                                       blockExpand->stride_y(),
                                       /* caffeMode */ false));
Z
zhangjinchao01 已提交
559 560 561 562 563 564 565 566
  config.layerConfig.set_size(blockExpand->block_x() * blockExpand->block_y() *
                              blockExpand->channels());

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "blockexpand", 100, false, useGpu);
  }
}

567 568 569 570 571 572 573 574
TEST(Layer, maxoutLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("maxout");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 4096, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  MaxOutConfig* maxout = input->mutable_maxout_conf();
L
Luo Tao 已提交
575
  ImageConfig* image = maxout->mutable_image_conf();
576

L
Luo Tao 已提交
577 578 579
  image->set_img_size(32);
  image->set_img_size_y(32);
  image->set_channels(4);
580 581 582 583 584 585
  maxout->set_groups(2);

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "maxout", 10, false, useGpu);
  }
}
Z
zhangjinchao01 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
void testFcLayer(string format, size_t nnz) {
  TestConfig config;
  config.biasSize = 4096;
  config.layerConfig.set_type("fc");
  config.layerConfig.set_size(4096);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_drop_rate(0.1);

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", 8192, nnz, ParaSparse(format)});
  config.layerConfig.add_inputs();

  LOG(INFO) << config.inputDefs[0].sparse.sparse << " "
            << config.inputDefs[0].sparse.format;

  for (auto useGpu : {false, true}) {
602 603 604 605 606
    testLayerGrad(config,
                  "fc",
                  100,
                  /* trans */ false,
                  useGpu,
Z
zhangjinchao01 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
                  /* weight */ true);
  }
}

TEST(Layer, fcLayer) {
  testFcLayer("", 4096 * 4096 * 2);
  testFcLayer("csc", 4096 * 40);
  testFcLayer("csr", 4096 * 40);
}

TEST(Layer, SelectiveFullyConnectedLayer) {
  TestConfig config;
  size_t nin = 16;
  size_t nout = 256;
  config.layerConfig.set_type("selective_fc");
  config.layerConfig.set_size(nout);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_has_selected_colums(true);
  config.layerConfig.set_selective_fc_pass_generation(false);
  config.biasSize = nout;

  config.inputDefs.push_back({INPUT_DATA, "input0", nin, nin * nout});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back(
      {INPUT_SPARSE_NON_VALUE_DATA, "index", nout, 0, ParaSparse("csr", true)});
  config.layerConfig.add_inputs();

634 635 636 637 638 639
  testLayerGrad(config,
                "selective_fc",
                100,
                /* trans= */ false,
                /* useGup= */ false,
                false);
640
#ifdef PADDLE_WITH_CUDA
641 642 643 644 645 646
  testLayerGrad(config,
                "selective_fc",
                100,
                /* trans= */ false,
                /* useGup= */ true,
                false);
Z
zhangjinchao01 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
#endif
}

TEST(Layer, DataNormLayer) {
  TestConfig config;
  config.layerConfig.set_type("data_norm");
  config.layerConfig.set_size(20);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 20, 100});
  config.inputDefs.back().isStatic = true;
  config.layerConfig.add_inputs();

  for (auto strategy : {"z-score", "min-max", "decimal-scaling"}) {
    config.layerConfig.set_data_norm_strategy(strategy);
    // The parameters are static, so not support GPU now
663 664 665 666
    testLayerGrad(config,
                  "data_norm",
                  200,
                  /* trans */ false,
Z
zhangjinchao01 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
                  /* useGpu */ false);
  }
}

TEST(Layer, hsigmoidLayer) {
  TestConfig config;
  config.layerConfig.set_type("hsigmoid");
  config.layerConfig.set_num_classes(5);
  config.layerConfig.set_size(1);
  config.biasSize = config.layerConfig.num_classes() - 1;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 200});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 5, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // Not support GPU now
684 685 686 687 688
  testLayerGrad(config,
                "hsigmoid",
                100,
                /* trans */ false, /* useGpu */
                false);
Z
zhangjinchao01 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701
}

TEST(Layer, multi_cross) {
  TestConfig config;
  config.layerConfig.set_type("multi-class-cross-entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
702 703
    testLayerGrad(
        config, "multi-class-cross-entropy", 100, /* trans */ false, useGpu);
Z
zhangjinchao01 已提交
704 705 706
  }
}

H
Haonan 已提交
707
TEST(Layer, multi_binary_label_sparse_mat) {
Z
zhangjinchao01 已提交
708 709 710 711 712 713 714 715 716
  TestConfig config;
  config.layerConfig.set_type("multi_binary_label_cross_entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

717
  for (auto useGpu : {false, true}) {
718 719 720 721 722
    testLayerGrad(config,
                  "multi_binary_label_cross_entropy",
                  100,
                  /* trans */ false,
                  useGpu);
723
  }
Z
zhangjinchao01 已提交
724 725
}

H
Haonan 已提交
726 727 728 729 730 731 732 733 734 735 736
TEST(layer, multi_binary_label_id) {
  TestConfig config;
  config.layerConfig.set_type("multi_binary_label_cross_entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
737 738 739 740 741
    testLayerGrad(config,
                  "multi_binary_label_cross_entropy",
                  100,
                  /* trans */ false,
                  useGpu);
H
Haonan 已提交
742 743 744
  }
}

Z
zhangjinchao01 已提交
745 746 747 748 749 750 751 752 753 754 755 756
TEST(Layer, multi_cross_with_selfnorm) {
  TestConfig config;
  config.layerConfig.set_type("multi_class_cross_entropy_with_selfnorm");
  config.layerConfig.set_softmax_selfnorm_alpha(0.1);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // Not support GPU now
757 758 759
  testLayerGrad(config,
                "multi_class_cross_entropy_with_selfnorm",
                100,
Z
zhangjinchao01 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
                /* trans */ false,
                /* useGpu */ false);
}

TEST(Layer, multi_cross_soft) {
  TestConfig config;
  config.layerConfig.set_type("soft_binary_class_cross_entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
775 776 777 778 779
    testLayerGrad(config,
                  "soft_binary_class_cross_entropy",
                  100,
                  /* trans */ false,
                  useGpu);
Z
zhangjinchao01 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
  }
}

TEST(Layer, square_error) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "square_error", 100, /* trans */ false, useGpu);
  }
}

TEST(Layer, sparse_square_error) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // "GpuSparseMatrix" as label is not supported
809 810 811 812
  testLayerGrad(config,
                "square_error",
                100,
                /* trans */ false,
Z
zhangjinchao01 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826
                /* useGpu */ false);
}

TEST(Layer, sparse_float_square_error) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_SPARSE_FLOAT_VALUE_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // "GpuSparseMatrix" as label is not supported
827 828 829 830
  testLayerGrad(config,
                "square_error",
                100,
                /* trans */ false,
Z
zhangjinchao01 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
                /* useGpu */ false);
}

TEST(Layer, square_error_weighted) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;
  config.testAccumulate = false;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "square_error", 100, /* trans */ false, useGpu);
  }
}

L
Luo Tao 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
TEST(Layer, huber_regression_loss) {
  TestConfig config;
  config.layerConfig.set_type("huber_regression");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    for (auto delta : {1, 3, 5}) {
      config.layerConfig.set_delta(delta);
      testLayerGrad(config, "huber_regression", 100, /* trans */ false, useGpu);
    }
  }
}

Z
zhangjinchao01 已提交
870 871
TEST(Layer, huber_two_class) {
  TestConfig config;
872
  config.layerConfig.set_type("huber_classification");
Z
zhangjinchao01 已提交
873 874 875 876 877 878 879 880
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 2, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
L
Luo Tao 已提交
881
    testLayerGrad(config, "huber_two_class", 100, /* trans */ false, useGpu);
Z
zhangjinchao01 已提交
882 883 884 885 886 887 888 889 890
  }
}

void testExpandLayer(string trans_type, bool hasSubseq) {
  TestConfig config;
  config.layerConfig.set_type("expand");

  config.inputDefs.push_back(
      {trans_type == "non-seq" ? INPUT_DENSE_DIM_DATA : INPUT_SEQUENCE_DATA,
891 892 893
       "layer_0",
       10,
       0});
Z
zhangjinchao01 已提交
894
  config.inputDefs.push_back(
895 896 897 898
      {hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
       "layer_1",
       10,
       0});
Z
zhangjinchao01 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.set_trans_type(trans_type);
  LOG(INFO) << " trans_type=" << trans_type << " hasSubseq=" << hasSubseq;

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "expand", 30, false, useGpu);
  }
}

TEST(Layer, ExpandLayer) {
  testExpandLayer("non-seq", false);  // non-seq expand to seq
  testExpandLayer("non-seq", true);   // non-seq expand to hasSubseq
  testExpandLayer("seq", true);       // seq expand to hasSubseq
}

915 916 917
void testDegradeLayer(bool hasSubseq,
                      string layer_type,
                      string trans_type,
L
Luo Tao 已提交
918
                      int stride) {
Z
zhangjinchao01 已提交
919 920 921
  TestConfig config;
  config.layerConfig.set_type(layer_type);
  config.layerConfig.set_size(10);
922
  config.layerConfig.set_seq_pool_stride(stride);
Z
zhangjinchao01 已提交
923 924 925
  config.biasSize = 0;

  config.inputDefs.push_back(
926 927 928 929
      {hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
       "layer_0",
       10,
       0});
Z
zhangjinchao01 已提交
930 931 932 933 934 935 936 937 938 939 940 941
  config.layerConfig.add_inputs();
  config.layerConfig.set_trans_type(trans_type);

  auto testDegradeLayerGrad = [](TestConfig& config, string layer_type) {
    for (auto useGpu : {false, true}) {
      testLayerGrad(config, layer_type, 100, false, useGpu);
    }
  };

  if (layer_type == "average") {
    for (auto strategy : {"average", "sum", "squarerootn"}) {
      LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type
942 943
                << " average_strategy=" << strategy
                << " seq_pool_stride=" << stride;
Z
zhangjinchao01 已提交
944 945 946 947
      config.layerConfig.set_average_strategy(strategy);
      testDegradeLayerGrad(config, layer_type);
    }
  } else {
948 949
    LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type
              << " seq_pool_stride=" << stride;
Z
zhangjinchao01 已提交
950 951 952 953 954
    testDegradeLayerGrad(config, layer_type);
  }
}

TEST(Layer, MaxLayer) {
L
Luo Tao 已提交
955
  testDegradeLayer(false, "max", "non-seq", -1);  // seq max to non-seq
956 957 958 959 960 961
  testDegradeLayer(false,
                   "max",
                   "non-seq",
                   5);  // seq max to a shorten seq, stride window = 5
  testDegradeLayer(true, "max", "non-seq", -1);  // hasSubseq max to non-seq
  testDegradeLayer(true, "max", "seq", -1);      // hasSubseq max to seq
Z
zhangjinchao01 已提交
962 963 964
}

TEST(Layer, SequenceLastInstanceLayer) {
965 966
  testDegradeLayer(false,
                   "seqlastins",
L
Luo Tao 已提交
967 968
                   "non-seq",
                   -1);  // seq seqlastins to non-seq
969 970 971 972
  testDegradeLayer(false,
                   "seqlastins",
                   "non-seq",
                   5);  // seq seqlastins to a shorten seq, stride window = 5
973 974
  testDegradeLayer(true,
                   "seqlastins",
L
Luo Tao 已提交
975 976 977 978
                   "non-seq",
                   -1);  // hasSubseq seqlastins to non-seq
  testDegradeLayer(
      true, "seqlastins", "seq", -1);  // hasSubseq seqlastins to seq
Z
zhangjinchao01 已提交
979 980 981
}

TEST(Layer, AverageLayer) {
L
Luo Tao 已提交
982
  testDegradeLayer(false, "average", "non-seq", -1);  // seq average to non-seq
983
  testDegradeLayer(false,
L
Luo Tao 已提交
984
                   "average",
985 986
                   "non-seq",
                   5);  // seq average to a shorten seq, stride window = 5
L
Luo Tao 已提交
987 988 989
  testDegradeLayer(
      true, "average", "non-seq", -1);           // hasSubseq average to non-seq
  testDegradeLayer(true, "average", "seq", -1);  // hasSubseq average to seq
Z
zhangjinchao01 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
}

TEST(Layer, SequenceConcatLayer) {
  TestConfig config;
  config.layerConfig.set_type("seqconcat");
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "seqconcat", 100, false, useGpu);
  }
}

TEST(Layer, SequenceReshapeLayer) {
  TestConfig config;
  config.layerConfig.set_type("seqreshape");
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 100, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "seqreshape", 100, false, useGpu);
  }
}

TEST(Layer, ConvShiftLayer) {
  TestConfig config;
  config.layerConfig.set_type("conv_shift");
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 3, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // Not support GPU now
  testLayerGrad(config, "conv_shift", 100, false, false);
}

TEST(Layer, PowerLayer) {
  TestConfig config;
  config.layerConfig.set_type("power");
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "power", 100, false, useGpu);
  }
}

TEST(Layer, ConvexCombinationLayer) {
  TestConfig config;
  config.layerConfig.set_type("convex_comb");
  config.layerConfig.set_size(20);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 100, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "convex_comb", 100, false, useGpu);
  }
}

TEST(Layer, InterpolationLayer) {
  TestConfig config;
  config.layerConfig.set_type("interpolation");
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_2", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "interpolation", 100, false, useGpu);
  }
}

TEST(Layer, OuterProdLayer) {
  TestConfig config;
  config.layerConfig.set_type("out_prod");
  config.layerConfig.set_size(100);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "out_prod", 100, false, useGpu);
  }
}

TEST(Layer, SlopeInterceptLayer) {
  TestConfig config;
  config.layerConfig.set_type("slope_intercept");
  config.layerConfig.set_size(10);
  config.layerConfig.set_slope(1.0);
  config.layerConfig.set_intercept(0.1);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "slope_intercept", 100, false, useGpu);
  }
}

TEST(Layer, ScalingLayer) {
  TestConfig config;
  config.layerConfig.set_type("scaling");
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "scaling", 100, false, useGpu);
  }
}

void testNormLayer(const string& normType, bool trans, bool useGpu) {
  TestConfig config;
  config.layerConfig.set_type("norm");
  config.layerConfig.set_active_type("relu");

L
Luo Tao 已提交
1135
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1568, 0});
Z
zhangjinchao01 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144
  LayerInputConfig* input = config.layerConfig.add_inputs();
  NormConfig* norm = input->mutable_norm_conf();
  norm->set_norm_type(normType);
  norm->set_channels(16);
  norm->set_size(5);
  norm->set_scale(0.001);
  norm->set_pow(0.75);
  norm->set_blocked(0);
  norm->set_img_size(14);
L
Luo Tao 已提交
1145
  norm->set_img_size_y(7);
Z
zhangjinchao01 已提交
1146
  norm->set_output_x(norm->img_size());
L
Luo Tao 已提交
1147
  norm->set_output_y(norm->img_size_y());
Z
zhangjinchao01 已提交
1148 1149 1150 1151 1152 1153 1154
  if (norm->norm_type() == "cmrnorm" ||
      norm->norm_type() == "cmrnorm-projection") {
    norm->set_scale(norm->scale() / norm->size());
  } else {
    norm->set_scale(norm->scale() / (norm->size() * norm->size()));
  }

L
Luo Tao 已提交
1155
  config.layerConfig.set_size(norm->output_x() * norm->output_y() *
Z
zhangjinchao01 已提交
1156 1157 1158 1159 1160 1161 1162
                              norm->channels());
  config.biasSize = 0;

  testLayerGrad(config, "norm", 100, trans, useGpu);
}

TEST(Layer, NormLayer) {
1163 1164 1165 1166 1167 1168
  testNormLayer("cmrnorm-projection",
                /* trans= */ false, /* useGpu= */
                true);
  testNormLayer("cmrnorm-projection",
                /* trans= */ false, /* useGpu= */
                false);
Z
zhangjinchao01 已提交
1169 1170
}

1171 1172
void setPoolConfig(TestConfig* config,
                   PoolConfig* pool,
Z
zhangjinchao01 已提交
1173 1174 1175 1176 1177
                   const string& poolType) {
  (*config).biasSize = 0;
  (*config).layerConfig.set_type("pool");
  (*config).layerConfig.set_num_filters(16);

1178 1179 1180
  int kw = 3, kh = 3;
  int pw = 0, ph = 0;
  int sw = 2, sh = 2;
Z
zhangjinchao01 已提交
1181 1182
  pool->set_pool_type(poolType);
  pool->set_channels(16);
1183 1184 1185 1186 1187 1188 1189 1190
  pool->set_size_x(kw);
  pool->set_size_y(kh);
  pool->set_start(0);
  pool->set_padding(pw);
  pool->set_padding_y(ph);
  pool->set_stride(sw);
  pool->set_stride_y(sh);

1191 1192
  int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false);
  int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false);
1193 1194
  pool->set_output_x(ow);
  pool->set_output_y(oh);
Z
zhangjinchao01 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203
}

void testPoolLayer(const string& poolType, bool trans, bool useGpu) {
  TestConfig config;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 3136, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  PoolConfig* pool = input->mutable_pool_conf();

  pool->set_img_size(14);
1204 1205 1206
  pool->set_img_size_y(14);
  setPoolConfig(&config, pool, poolType);
  config.layerConfig.set_size(pool->output_x() * pool->output_y() *
Z
zhangjinchao01 已提交
1207 1208 1209 1210 1211
                              pool->channels());

  testLayerGrad(config, "pool", 100, trans, useGpu);
}

1212
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
void testPoolLayer2(const string& poolType, bool trans, bool useGpu) {
  TestConfig config;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  PoolConfig* pool = input->mutable_pool_conf();

  pool->set_size_y(4);
  pool->set_stride_y(3);
  pool->set_img_size(10);
  pool->set_img_size_y(20);
1223
  setPoolConfig(&config, pool, poolType);
Z
zhangjinchao01 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
  pool->set_output_y((pool->img_size_y() - pool->start() - pool->size_y()) /
                         ((float)pool->stride_y()) +
                     1.5);
  config.layerConfig.set_size(pool->output_x() * pool->output_y() *
                              pool->channels());

  testLayerGrad(config, "pool", 100, trans, useGpu);
}
#endif

TEST(Layer, PoolLayer) {
  testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ false);
  testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ false);

1238
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247
  testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer2("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer2("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
#endif
}

C
chengduoZH 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
void setPool3DConfig(TestConfig* config,
                     PoolConfig* pool,
                     const string& poolType) {
  // filter size
  const int NUM_FILTERS = 16;
  const int FILTER_SIZE = 3;
  const int FILTER_SIZE_Y = 3;
  const int FILTER_SIZE_Z = 3;
  const int CHANNELS = 16;

  (*config).biasSize = 0;
  (*config).layerConfig.set_type("pool3d");
  (*config).layerConfig.set_num_filters(NUM_FILTERS);

  int kw = FILTER_SIZE, kh = FILTER_SIZE_Y, kd = FILTER_SIZE_Z;
  int pw = 0, ph = 0, pd = 0;
  int sw = 2, sh = 2, sd = 2;

  pool->set_pool_type(poolType);
  pool->set_pool_type("avg");
  pool->set_channels(CHANNELS);
  pool->set_size_x(kw);
  pool->set_size_y(kh);
  pool->set_size_z(kd);
  pool->set_padding(0);
  pool->set_padding_y(0);
  pool->set_padding_z(0);
  pool->set_stride(sw);
  pool->set_stride_y(sh);
  pool->set_stride_z(sd);
  pool->set_start(0);
  int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false);
  int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false);
  int od = outputSize(pool->img_size_z(), kd, pd, sd, /* caffeMode */ false);
  pool->set_output_x(ow);
  pool->set_output_y(oh);
  pool->set_output_z(od);
}

void testPool3DLayer(const string& poolType, bool trans, bool useGpu) {
  TestConfig config;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 11664, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  PoolConfig* pool = input->mutable_pool_conf();

  const int IMAGE_SIZE = 9;
  const int IMAGE_SIZE_Y = 9;
  const int IMAGE_SIZE_Z = 9;

  pool->set_img_size(IMAGE_SIZE);
  pool->set_img_size_y(IMAGE_SIZE_Y);
  pool->set_img_size_z(IMAGE_SIZE_Z);

  setPool3DConfig(&config, pool, poolType);
  config.layerConfig.set_size(pool->output_x() * pool->output_y() *
                              pool->channels());

  testLayerGrad(config, "pool3d", 100, trans, useGpu);
}

TEST(Layer, Pool3DLayer) {
  testPool3DLayer("avg", /* trans= */ false, /* useGpu= */ false);
  testPool3DLayer("max", /* trans= */ false, /* useGpu= */ false);
1311
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
1312 1313 1314 1315 1316
  testPool3DLayer("avg", /* trans= */ false, /* useGpu= */ true);
  testPool3DLayer("max", /* trans= */ false, /* useGpu= */ true);
#endif
}

1317 1318 1319
void testSppLayer(const string& poolType,
                  const int pyramidHeight,
                  bool trans,
Q
qijun 已提交
1320 1321 1322 1323 1324 1325 1326 1327
                  bool useGpu) {
  TestConfig config;
  config.layerConfig.set_type("spp");
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  SppConfig* sppConfig = input->mutable_spp_conf();
  sppConfig->set_pool_type(poolType);
  sppConfig->set_pyramid_height(pyramidHeight);
L
Luo Tao 已提交
1328 1329 1330 1331
  ImageConfig* imageConfig = sppConfig->mutable_image_conf();
  imageConfig->set_channels(16);
  imageConfig->set_img_size(10);
  imageConfig->set_img_size_y(20);
Q
qijun 已提交
1332
  int outputSize = (std::pow(4, sppConfig->pyramid_height()) - 1) / (4 - 1);
L
Luo Tao 已提交
1333
  config.layerConfig.set_size(outputSize * imageConfig->channels());
Q
qijun 已提交
1334 1335 1336 1337 1338
  testLayerGrad(config, "spp", 100, trans, useGpu);
}

TEST(Layer, SpatialPyramidPoolLayer) {
  for (auto useGpu : {false, true}) {
1339 1340 1341 1342
    for (auto pyramidHeight : {1, 2, 3}) {
      testSppLayer("avg-projection", pyramidHeight, false, useGpu);
      testSppLayer("max-projection", pyramidHeight, false, useGpu);
    }
Q
qijun 已提交
1343 1344 1345
  }
}

Z
zhangjinchao01 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
TEST(Layer, rankCostLayer) {
  TestConfig config;
  config.layerConfig.set_type("rank-cost");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 1, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "rank-cost", 100, false, useGpu);
  }
}

X
xuwei06 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
TEST(Layer, sumCostLayer) {
  TestConfig config;
  config.layerConfig.set_type("sum_cost");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "sum_cost", 100, false, useGpu);
  }
}

Z
zhangjinchao01 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
TEST(Layer, weightedRankCostLayer) {
  TestConfig config;
  config.layerConfig.set_type("rank-cost");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 1, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_3", 1, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "weighted-rank-cost", 100, false, useGpu);
  }
}

TEST(Layer, TensorLayer) {
  TestConfig config;
  config.layerConfig.set_type("tensor");
  config.layerConfig.set_size(10);
  config.layerConfig.set_active_type("sigmoid");
  config.biasSize = config.layerConfig.size();

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 250});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 5, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "tensor", 100, false, useGpu);
  }
}

TEST(Layer, RecurrentLayer) {
  TestConfig config;
  config.layerConfig.set_type("recurrent");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("tanh");
  config.biasSize = 4;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 4, /* paraSize= */ 16});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    for (auto reversed : {false, true}) {
      config.layerConfig.set_reversed(reversed);
      config.testState = !reversed;
      testLayerGrad(config, "recurrent", 50, /* trans= */ false, useGpu);
    }
  }
}

TEST(Layer, LstmLayer) {
  TestConfig config;
  config.layerConfig.set_type("lstmemory");
  config.layerConfig.set_size(4);
1436
  config.layerConfig.set_active_type("tanh");
Z
zhangjinchao01 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
  config.layerConfig.set_active_state_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 28;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 64});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    for (auto reversed : {false, true}) {
      config.layerConfig.set_reversed(reversed);
      config.testState = !reversed;
      testLayerGrad(config, "lstmemory", 100, /* trans= */ false, useGpu);
    }
  }
  for (auto useGpu : {true}) {
    config.testBatchState = true;
    config.layerConfig.set_reversed(false);
    testLayerGrad(config, "lstmemory", 10, /* trans= */ false, useGpu);
  }
}

TEST(Layer, MDLstmLayer) {
  TestConfig config;
  config.layerConfig.set_type("mdlstmemory");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_state_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 4 * 9;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_MDIM_DATA, "layer_0", 4 * 5, 4 * 4 * 5});
  config.layerConfig.add_inputs();
  config.layerConfig.add_directions(true);
  config.layerConfig.add_directions(true);

  for (auto useGpu : {false, true}) {
    for (int i = 0; i < 2; i++) {
      for (int j = 0; j < 2; j++) {
        config.layerConfig.set_directions(0, bool(i));
        config.layerConfig.set_directions(1, bool(j));
        testLayerGrad(config, "mdlstmemory", 100, false, useGpu);
      }
    }
  }
}

TEST(Layer, ParameterReluLayer) {
  auto testParameterReluLayer = [&](size_t inputSize, size_t channels) {
    TestConfig config;
    config.layerConfig.set_type("prelu");
    config.inputDefs.push_back({INPUT_DATA, "layer_0", inputSize, channels});
    config.layerConfig.add_inputs();
    config.layerConfig.set_size(inputSize);
    config.layerConfig.set_partial_sum(inputSize /
                                       channels);  // size of feature map
    for (auto useGpu : {false, true}) {
      testLayerGrad(config, "prelu", 100, false, useGpu);
    }
  };

  testParameterReluLayer(192, 1);
  testParameterReluLayer(192, 3);
  testParameterReluLayer(192, 192);
}

TEST(Layer, ResizeLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("resize");
  config.layerConfig.set_size(64);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 16, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "resize", 100, false, useGpu);
  }
}

1518 1519 1520 1521
TEST(Layer, RotateLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("rotate");
H
Haonan 已提交
1522
  const int CHANNEL = 2;
H
Haonan 已提交
1523 1524
  const int HEIGHT = 8;
  const int WIDTH = 4;
H
Haonan 已提交
1525
  const int INPUT_SIZE = HEIGHT * WIDTH * CHANNEL;
1526
  config.layerConfig.set_size(INPUT_SIZE);
H
Haonan 已提交
1527 1528
  config.layerConfig.set_height(HEIGHT);
  config.layerConfig.set_width(WIDTH);
1529 1530 1531 1532 1533 1534 1535 1536
  config.inputDefs.push_back({INPUT_DATA, "layer_0", INPUT_SIZE, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "rotate", 100, false, useGpu);
  }
}

Z
zhangjinchao01 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
TEST(Layer, NCELayer) {
  TestConfig config;
  size_t numClasses = 4;
  config.layerConfig.set_type("nce");
  config.layerConfig.set_size(1);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_num_classes(numClasses);
  config.biasSize = numClasses;

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 16 * numClasses});
  config.inputDefs.push_back(
      {INPUT_LABEL, "label", /* dim= */ numClasses, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto withWeight : {false, true}) {
    if (withWeight) {
      config.inputDefs.push_back(
          {INPUT_DATA_TARGET, "weight", /* dim= */ 1, /* paraSize= */ 0});
      config.layerConfig.add_inputs();
    }

    for (auto isIdLabel : {false, true}) {
      config.inputDefs[1] = {
1562 1563
          isIdLabel ? INPUT_LABEL : INPUT_SPARSE_NON_VALUE_DATA,
          "label",
Z
zhangjinchao01 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
          /* dim= */ numClasses,
          /* paraSize= */ 0};

      for (auto withDist : {false, true}) {
        config.layerConfig.clear_neg_sampling_dist();
        if (withDist) {
          double sum = 0;
          for (size_t i = 0; i < numClasses; ++i) {
            real p = rand();  // NOLINT use rand_r
            config.layerConfig.add_neg_sampling_dist(p);
            sum += p;
          }
          for (size_t i = 0; i < numClasses; ++i) {
            real p = config.layerConfig.neg_sampling_dist(i) / sum;
            config.layerConfig.set_neg_sampling_dist(i, p);
          }
        }
        LOG(INFO) << "NCELayer "
                  << " isIdLabel=" << isIdLabel << " withWeight=" << withWeight
                  << " withDist=" << withDist;
        // Not support GPU now
1585 1586 1587 1588
        testLayerGrad(config,
                      "nce",
                      100,
                      /* trans= */ false,
Z
zhangjinchao01 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
                      /* useGpu */ false);
      }
    }
  }
}

TEST(Layer, GatedRecurrentLayer) {
  TestConfig config;
  config.layerConfig.set_type("gated_recurrent");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 12;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 12, /* paraSize= */ 48});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    for (auto reversed : {false, true}) {
      config.layerConfig.set_reversed(reversed);
      config.testState = !reversed;
      testLayerGrad(config, "gated_recurrent", 100, /* trans= */ false, useGpu);
    }
  }
}

TEST(Layer, GruStepLayer) {
  TestConfig config;
  config.layerConfig.set_type("gru_step");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 12;

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", /* dim= */ 12, /* paraSize= */ 48});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_1", /* dim= */ 4, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "gruStep", 100, /* trans= */ false, useGpu);
  }
}

TEST(Layer, LstmStepLayer) {
  TestConfig config;
  config.layerConfig.set_type("lstm_step");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_state_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 12;
  config.testAccumulate = false;

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 0});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_1", /* dim= */ 4, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "lstmStep", 100, /* trans= */ false, useGpu);
  }
}

void testBatchNormLayer(const string& type, bool trans, bool useGpu) {
  TestConfig config;
  const int CHANNELS = 10;
  const int IMG_SIZE = 16;
L
Luo Tao 已提交
1662 1663
  const int IMG_SIZE_Y = 8;
  size_t size = CHANNELS * IMG_SIZE * IMG_SIZE_Y;
Z
zhangjinchao01 已提交
1664
  config.layerConfig.set_type(type);
L
Luo Tao 已提交
1665
  config.layerConfig.set_size(size);
Z
zhangjinchao01 已提交
1666 1667
  config.layerConfig.set_active_type("sigmoid");
  config.biasSize = CHANNELS;
1668 1669
  config.inputDefs.push_back({INPUT_DATA,
                              "layer_0",
L
Luo Tao 已提交
1670
                              /* dim= */ size,
Z
zhangjinchao01 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
                              /* paraSize= */ CHANNELS});

  config.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1, CHANNELS});
  config.inputDefs.back().isStatic = true;
  config.inputDefs.push_back({INPUT_DATA, "layer_2_running_var", 1, CHANNELS});
  config.inputDefs.back().isStatic = true;

  LayerInputConfig* input = config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  ImageConfig* img_conf = input->mutable_image_conf();
  img_conf->set_channels(CHANNELS);
  img_conf->set_img_size(IMG_SIZE);
L
Luo Tao 已提交
1685
  img_conf->set_img_size_y(IMG_SIZE_Y);
Z
zhangjinchao01 已提交
1686

1687 1688 1689 1690 1691
  testLayerGrad(config,
                "batch_norm",
                64,
                /* trans= */ trans,
                useGpu,
Z
zhangjinchao01 已提交
1692 1693 1694 1695 1696
                /* useWeight */ true);
}

TEST(Layer, BatchNormalizationLayer) {
  testBatchNormLayer("batch_norm", false, false);
1697
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
1698 1699 1700 1701 1702 1703 1704
  testBatchNormLayer("batch_norm", false, true);
  if (hl_get_cudnn_lib_version() >= int(4000)) {
    testBatchNormLayer("cudnn_batch_norm", false, true);
  }
#endif
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
void testBatchNorm3DLayer(const string& type, bool trans, bool useGpu) {
  TestConfig config;
  const int CHANNELS = 10;
  const int IMG_SIZE = 16;
  const int IMG_SIZE_Y = 8;
  const int IMG_SIZE_Z = 8;
  size_t size = CHANNELS * IMG_SIZE * IMG_SIZE_Y * IMG_SIZE_Z;
  config.layerConfig.set_type(type);
  config.layerConfig.set_size(size);
  config.layerConfig.set_active_type("sigmoid");
  config.biasSize = CHANNELS;
  config.inputDefs.push_back({INPUT_DATA,
                              "layer_0",
                              /* dim= */ size,
                              /* paraSize= */ CHANNELS});

  config.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1, CHANNELS});
  config.inputDefs.back().isStatic = true;
  config.inputDefs.push_back({INPUT_DATA, "layer_2_running_var", 1, CHANNELS});
  config.inputDefs.back().isStatic = true;

  LayerInputConfig* input = config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  ImageConfig* img_conf = input->mutable_image_conf();
  img_conf->set_channels(CHANNELS);
  img_conf->set_img_size(IMG_SIZE);
  img_conf->set_img_size_y(IMG_SIZE_Y);
  img_conf->set_img_size_z(IMG_SIZE_Z);

  testLayerGrad(config,
                "batch_norm",
                64,
                /* trans= */ trans,
                useGpu,
                /* useWeight */ true);
}

TEST(Layer, testBatchNorm3DLayer) {
  testBatchNorm3DLayer("batch_norm", false, false);
1746
#ifdef PADDLE_WITH_CUDA
1747 1748 1749 1750 1751 1752 1753
  testBatchNorm3DLayer("batch_norm", false, true);
  if (hl_get_cudnn_lib_version() >= int(4000)) {
    testBatchNorm3DLayer("cudnn_batch_norm", false, true);
  }
#endif
}

1754
void testConvOperator(bool isDeconv) {
Z
zhangjinchao01 已提交
1755 1756 1757 1758 1759 1760
  TestConfig config;
  const int NUM_FILTERS = 16;
  const int FILTER_SIZE = 2;
  const int FILTER_SIZE_Y = 3;
  const int CHANNELS = 3;
  const int IMAGE_SIZE = 16;
1761
  const int IMAGE_SIZE_Y = 9;
Z
zhangjinchao01 已提交
1762
  OperatorConfig& operatorConf = *config.layerConfig.add_operator_confs();
1763 1764 1765 1766 1767
  if (isDeconv) {
    operatorConf.set_type("convt");
  } else {
    operatorConf.set_type("conv");
  }
Z
zhangjinchao01 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
  ConvConfig* conv = operatorConf.mutable_conv_conf();
  operatorConf.set_num_filters(NUM_FILTERS);
  conv->set_filter_size(FILTER_SIZE);
  conv->set_filter_size_y(FILTER_SIZE_Y);
  conv->set_channels(CHANNELS);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_groups(1);
  conv->set_img_size(IMAGE_SIZE);
L
Luo Tao 已提交
1779
  conv->set_img_size_y(IMAGE_SIZE_Y);
L
Luo Tao 已提交
1780 1781 1782 1783
  conv->set_output_x(outputSize(conv->img_size(),
                                conv->filter_size(),
                                conv->padding(),
                                conv->stride(),
L
Luo Tao 已提交
1784
                                /*  caffeMode */ true));
L
Luo Tao 已提交
1785 1786 1787 1788
  conv->set_output_y(outputSize(conv->img_size_y(),
                                conv->filter_size_y(),
                                conv->padding_y(),
                                conv->stride_y(),
L
Luo Tao 已提交
1789
                                /*  caffeMode */ true));
Z
zhangjinchao01 已提交
1790

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
  if (isDeconv) {
    conv->set_filter_channels(NUM_FILTERS / conv->groups());
    config.inputDefs.push_back({INPUT_DATA,
                                "layer_0",
                                conv->output_x() * conv->output_y() * CHANNELS,
                                0});
    config.layerConfig.set_size(IMAGE_SIZE * IMAGE_SIZE_Y * NUM_FILTERS);
  } else {
    conv->set_filter_channels(conv->channels() / conv->groups());
    config.inputDefs.push_back(
        {INPUT_DATA, "layer_0", IMAGE_SIZE * IMAGE_SIZE_Y * CHANNELS, 0});
    config.layerConfig.set_size(conv->output_x() * conv->output_y() *
                                NUM_FILTERS);
  }

Z
zhangjinchao01 已提交
1806
  config.inputDefs.push_back(
1807 1808 1809 1810
      {INPUT_DATA,
       "layer_1",
       FILTER_SIZE * FILTER_SIZE_Y * CHANNELS * NUM_FILTERS,
       0});
Z
zhangjinchao01 已提交
1811 1812 1813 1814 1815 1816
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  testOperatorGrad(config, operatorConf, 100, /*useGpu*/ true, false);
}

1817 1818 1819 1820 1821
TEST(Operator, conv) {
  testConvOperator(/*isDeconv*/ true);
  testConvOperator(/*isDeconv*/ false);
}

Z
zhangjinchao01 已提交
1822 1823 1824 1825 1826 1827 1828
TEST(Layer, FeatureMapExpandLayer) {
  TestConfig config;
  config.layerConfig.set_type("featmap_expand");
  const int CHANNELS = 10;
  const int INPUT_SIZE = 100;
  config.layerConfig.set_size(INPUT_SIZE * CHANNELS);
  config.layerConfig.set_num_filters(CHANNELS);
1829 1830 1831 1832
  config.inputDefs.push_back({INPUT_SEQUENCE_DATA,
                              "layer_0",
                              /* dim= */ INPUT_SIZE,
                              /* paraSize= */ 0});
Z
zhangjinchao01 已提交
1833 1834
  config.layerConfig.add_inputs();
  for (auto useGpu : {false, true}) {
X
xuwei06 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843
    for (auto asRowVec : {false, true}) {
      config.layerConfig.set_user_arg(asRowVec ? "as_row_vec" : "as_col_vec");
      testLayerGrad(config,
                    "featmap_expand",
                    /*batch_size*/ 100,
                    /* trans= */ false,
                    useGpu,
                    /* useWeight */ true);
    }
Z
zhangjinchao01 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
  }
}

TEST(Layer, MultiplexLayer) {
  TestConfig config;
  const int LAYER_SIZE = 100;
  config.layerConfig.set_type("multiplex");
  config.layerConfig.set_size(LAYER_SIZE);

  config.inputDefs.push_back({INPUT_LABEL, "layer_0", 2, 0});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_1", /* dim= */ LAYER_SIZE, /* paraSize= */ 0});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_2", /* dim= */ LAYER_SIZE, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "multiplex", 512, /* trans= */ false, useGpu);
  }
}

D
dangqingqing 已提交
1867
TEST(Layer, PadLayer) {
Z
zhangjinchao01 已提交
1868 1869
  TestConfig config;
  config.biasSize = 0;
D
dangqingqing 已提交
1870
  config.layerConfig.set_type("pad");
Z
zhangjinchao01 已提交
1871

D
dangqingqing 已提交
1872 1873 1874 1875 1876
  int c = 4;
  int h = 31;
  int w = 36;
  size_t size = c * h * w;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", size, 0});
Z
zhangjinchao01 已提交
1877
  LayerInputConfig* input = config.layerConfig.add_inputs();
D
dangqingqing 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
  PadConfig* pad = input->mutable_pad_conf();
  ImageConfig* image = pad->mutable_image_conf();

  image->set_channels(c);
  image->set_img_size(h);
  image->set_img_size_y(w);
  pad->add_pad_c(1);
  pad->add_pad_c(2);
  pad->add_pad_h(2);
  pad->add_pad_h(3);
  pad->add_pad_w(3);
  pad->add_pad_w(5);
Z
zhangjinchao01 已提交
1890 1891

  for (auto useGpu : {false, true}) {
D
dangqingqing 已提交
1892
    testLayerGrad(config, "pad", 10, false, useGpu);
Z
zhangjinchao01 已提交
1893 1894 1895
  }
}

1896
TEST(Layer, CrossChannelNormLayer) {
G
gaoyuan 已提交
1897
  TestConfig config;
Y
yangyaming 已提交
1898 1899
  config.paramInitialMean = 1.;
  config.paramInitialStd = 0.;
1900
  config.layerConfig.set_type("norm");
G
gaoyuan 已提交
1901
  config.layerConfig.set_size(100);
1902 1903 1904 1905 1906 1907 1908 1909
  LayerInputConfig* input = config.layerConfig.add_inputs();
  NormConfig* norm = input->mutable_norm_conf();
  norm->set_norm_type("cross-channel-norm");
  norm->set_channels(10);
  norm->set_size(100);
  norm->set_scale(0);
  norm->set_pow(0);
  norm->set_blocked(0);
G
gaoyuan 已提交
1910 1911 1912
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 100, 10});

  for (auto useGpu : {false, true}) {
Y
yangyaming 已提交
1913
    testLayerGrad(config, "cross-channel-norm", 10, false, useGpu, false);
G
gaoyuan 已提交
1914 1915 1916
  }
}

G
gaoyuan 已提交
1917 1918 1919 1920
TEST(Layer, smooth_l1) {
  TestConfig config;
  config.layerConfig.set_type("smooth_l1");

1921 1922
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 200, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 200, 0});
G
gaoyuan 已提交
1923 1924 1925 1926
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
D
dangqingqing 已提交
1927
    testLayerGrad(config, "smooth_l1", 100, false, useGpu, false);
G
gaoyuan 已提交
1928 1929 1930
  }
}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
TEST(Layer, multibox_loss) {
  TestConfig config;
  config.layerConfig.set_type("multibox_loss");
  config.biasSize = 0;
  LayerInputConfig* input = config.layerConfig.add_inputs();
  MultiBoxLossConfig* multiboxLoss = input->mutable_multibox_loss_conf();
  multiboxLoss->set_num_classes(21);
  multiboxLoss->set_input_num(1);
  multiboxLoss->set_overlap_threshold(0.5);
  multiboxLoss->set_neg_pos_ratio(3);
  multiboxLoss->set_neg_overlap(0.5);
  multiboxLoss->set_background_id(0);
  multiboxLoss->set_height(3);
  multiboxLoss->set_width(3);

  size_t gtNum = 1;
  MatrixPtr labelValue = Matrix::create(gtNum, 6, false, false);
  labelValue->randomizeUniform();
  labelValue->add(-0.5);
  labelValue->sigmoid(*labelValue);
  real* labelData = labelValue->getData();
  size_t labelWidth = labelValue->getWidth();
  for (size_t i = 0; i < gtNum; ++i) {
    *(labelData + i * labelWidth) = std::rand() % 20 + 1;
    *(labelData + i * labelWidth + 1) = 0.400259;
    *(labelData + i * labelWidth + 2) = 0.377857;
    *(labelData + i * labelWidth + 3) = 0.525712;
    *(labelData + i * labelWidth + 4) = 0.519368;
  }
  vector<int> seqStartPositions(gtNum + 1, 0);
  for (size_t i = 1; i <= gtNum; ++i) {
    seqStartPositions[i] = i;
  }

  // Ensure at lease one matched bbox
  MatrixPtr priorValue = Matrix::create(1, 72, false, false);
  priorValue->randomizeUniform();
  priorValue->add(-0.5);
  priorValue->sigmoid(*priorValue);
  real* priorData = priorValue->getData();
  *(priorData) = 0.424811;
  *(priorData + 1) = 0.397059;
  *(priorData + 2) = 0.538905;
  *(priorData + 3) = 0.447091;
  *(priorData + 4) = 0.425720;
  *(priorData + 5) = 0.515228;
  *(priorData + 6) = 0.519452;
  *(priorData + 7) = 0.591065;

  config.inputDefs.push_back(
      {INPUT_SELF_DEFINE_DATA, "priorbox", priorValue, {}});
  config.inputDefs.push_back(
      {INPUT_SELF_DEFINE_DATA, "label", labelValue, seqStartPositions});
  config.inputDefs.push_back({INPUT_DATA, "locPred", 36, 0});
  config.inputDefs.push_back({INPUT_DATA, "confPred", 189, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "multibox_loss", 1, false, useGpu, false);
  }
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
TEST(Layer, TransLayer) {
  TestConfig config;
  const int height = 128;
  const int width = 1028;
  config.layerConfig.set_type("trans");
  config.layerConfig.set_size(width);

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", /* dim= */ height * width, /* paraSize= */ 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "trans", height, /* trans= */ false, useGpu);
  }
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
TEST(Layer, RowConvLayer) {
  const int context = 3;
  const int size = 512;

  TestConfig config;
  config.layerConfig.set_type("row_conv");
  config.layerConfig.set_size(size);
  config.layerConfig.set_active_type("sigmoid");

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_DATA, "layer_0", size, context * size});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  RowConvConfig* conv = input->mutable_row_conv_conf();
  conv->set_context_length(context);

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "row_conv", 100, false, useGpu, false);
  }
}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
TEST(Layer, CropLayer) {
  TestConfig config;
  // config input_0
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ImageConfig* img = input->mutable_image_conf();
  img->set_channels(4);
  img->set_img_size(16);
  config.layerConfig.set_axis(2);
  config.layerConfig.add_offset(0);
  config.layerConfig.add_offset(0);

  // config input_1
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 128, 0});
  input = config.layerConfig.add_inputs();
  img = input->mutable_image_conf();
  img->set_channels(2);
  img->set_img_size(8);

  // config crop layer
  config.layerConfig.set_type("crop");
  config.layerConfig.set_name("cropLayer");

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "crop", 100, false, useGpu, false);
  }
}

2059
TEST(Layer, SwitchOrderLayer) {
2060 2061 2062 2063 2064 2065 2066 2067 2068
  TestConfig config;
  // config input_0
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ImageConfig* img = input->mutable_image_conf();
  img->set_channels(4);
  img->set_img_size(16);
  img->set_img_size_y(16);

2069
  ReshapeConfig* reshape = config.layerConfig.mutable_reshape_conf();
W
wanghaoshuang 已提交
2070 2071 2072 2073
  reshape->add_height_axis(0);
  reshape->add_height_axis(1);
  reshape->add_height_axis(2);
  reshape->add_width_axis(3);
2074

2075
  // config softmax layer
2076 2077
  config.layerConfig.set_type("switch_order");
  config.layerConfig.set_name("switchOrderLayer");
2078 2079

  for (auto useGpu : {false, true}) {
2080
    testLayerGrad(config, "switch_order", 100, false, useGpu, true);
2081 2082 2083
  }
}

C
caoying03 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
vector<real> randSampling(real range, int n) {
  CHECK_GE(range, n);
  vector<real> num(range);
  iota(begin(num), end(num), 0.);
  if (range == n) return num;

  random_shuffle(begin(num), end(num));
  num.resize(n);
  sort(begin(num), end(num));
  return num;
2094 2095
}

2096
TEST(Layer, SubNestedSequenceLayer) {
C
caoying03 已提交
2097 2098
  // layer size is not crutial for this layer,
  // so use a small layer size in unittest
2099 2100 2101 2102 2103 2104 2105 2106
  const int layerSize = 4;

  const int maxSeqNum = 50;
  const int maxSeqLen = 50;
  const int maxBeamSize = 32;

  srand((size_t)(time(NULL)));
  int beamSize = 1 + (rand() % maxBeamSize);
2107 2108 2109 2110 2111 2112

  TestConfig config;
  config.layerConfig.set_type("sub_nested_seq");
  config.layerConfig.set_name("sub_nested_seq_layer");
  config.layerConfig.set_size(layerSize);

C
caoying03 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
  int seqNum = 1 + (rand() % maxSeqNum);

  // sequence information for the first input, it is a nested sequence
  vector<int> seqStartPos(seqNum + 1, 0);
  vector<int> subSeqStartPos(1, 0);

  // selected indices
  MatrixPtr selectedIndices = Matrix::create(seqNum, beamSize, false, false);
  selectedIndices->one();
  selectedIndices->mulScalar(-1.);
  real* indicesData = selectedIndices->getData();

  for (int i = 0; i < seqNum; ++i) {
    int subSeqNum = 1 + (rand() % maxSeqNum);
    for (int j = 0; j < subSeqNum; ++j) {
      subSeqStartPos.push_back(subSeqStartPos.back() +
                               (1 + (rand() % maxSeqLen)));
2130
    }
C
caoying03 已提交
2131 2132 2133 2134 2135 2136
    vector<real> selSeqs =
        randSampling(static_cast<real>(subSeqNum), min(beamSize, subSeqNum));
    memcpy(indicesData + (i * beamSize),
           selSeqs.data(),
           selSeqs.size() * sizeof(real));
    seqStartPos[i + 1] = subSeqStartPos.back();
2137 2138
  }

C
caoying03 已提交
2139 2140
  MatrixPtr seqInputPtr =
      Matrix::create(seqStartPos.back(), layerSize, false, false);
2141
  seqInputPtr->randomizeUniform();
2142
  config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
C
caoying03 已提交
2143 2144 2145
                              "nested_seq_input",
                              seqInputPtr,
                              seqStartPos,
2146 2147 2148
                              subSeqStartPos});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back(
C
caoying03 已提交
2149
      {INPUT_SELF_DEFINE_DATA, "selected_indices", selectedIndices});
2150 2151 2152 2153 2154
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config,
                  "sub_nested_seq",
C
caoying03 已提交
2155
                  /* batchSize */ seqNum,
2156 2157 2158 2159 2160 2161
                  /* trans */ false,
                  /* useGpu*/ useGpu,
                  /* useWeight */ false);
  }
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
TEST(Layer, ClipLayer) {
  const size_t batchSize = 128;
  const size_t size = 512;
  TestConfig config;
  config.layerConfig.set_type("clip");
  config.inputDefs.push_back({INPUT_DATA, "input", size, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ClipConfig* layerConf = input->mutable_clip_conf();
  double p1 = std::rand() / (double)RAND_MAX;
  double p2 = std::rand() / (double)RAND_MAX;
  layerConf->set_min(std::min(p1, p2));
  layerConf->set_max(std::max(p1, p2));
  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "clip", batchSize, false, useGpu, false);
  }
}

TEST(Layer, RowL2NormLayer) {
  const size_t batchSize = 128;
  const size_t size = 512;
  TestConfig config;
  config.layerConfig.set_type("row_l2_norm");
  config.layerConfig.set_size(size);
  config.inputDefs.push_back({INPUT_DATA, "input", size, 0});
  config.layerConfig.add_inputs();
  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "row_l2_norm", batchSize, false, useGpu, false);
  }
}
G
guosheng 已提交
2191

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
void test3DConvLayer(const string& type, bool trans, bool useGpu) {
  // filter size
  const int NUM_FILTERS = 6;
  // const int CHANNELS = 3;
  const int FILTER_SIZE = 3;
  const int FILTER_SIZE_Y = 3;
  const int FILTER_SIZE_Z = 3;

  // input image
  const int CHANNELS = 3;
  const int IMAGE_SIZE = 9;
  const int IMAGE_SIZE_Y = 9;
C
chengduoZH 已提交
2204
  const int IMAGE_SIZE_Z = 9;
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

  TestConfig config;
  config.biasSize = NUM_FILTERS;
  config.layerConfig.set_type(type);
  config.layerConfig.set_num_filters(NUM_FILTERS);
  config.layerConfig.set_partial_sum(1);
  config.layerConfig.set_shared_biases(true);

  // Setting up conv3D-trans layer
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();

  conv->set_channels(CHANNELS);
  conv->set_filter_size(FILTER_SIZE);
  conv->set_filter_size_y(FILTER_SIZE_Y);
  conv->set_filter_size_z(FILTER_SIZE_Z);
  conv->set_padding(0);
  conv->set_padding_y(0);
  conv->set_padding_z(0);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_stride_z(2);
  conv->set_img_size(IMAGE_SIZE);
  conv->set_img_size_y(IMAGE_SIZE_Y);
  conv->set_img_size_z(IMAGE_SIZE_Z);
  conv->set_output_x(outputSize(conv->img_size(),
                                conv->filter_size(),
                                conv->padding(),
                                conv->stride(),
                                /*  caffeMode */ true));
  conv->set_output_y(outputSize(conv->img_size_y(),
                                conv->filter_size_y(),
                                conv->padding_y(),
                                conv->stride_y(),
                                /*  caffeMode */ true));
  conv->set_output_z(outputSize(conv->img_size_z(),
                                conv->filter_size_z(),
                                conv->padding_z(),
                                conv->stride_z(),
                                /*  caffeMode */ true));

  config.layerConfig.set_size(conv->output_x() * conv->output_y() *
                              conv->output_z() * NUM_FILTERS);
  conv->set_groups(1);
  conv->set_filter_channels(conv->channels() / conv->groups());
  config.inputDefs.push_back(
      {INPUT_DATA,
       "layer_0",
       CHANNELS * IMAGE_SIZE * IMAGE_SIZE_Y * IMAGE_SIZE_Z,
       conv->filter_channels() * FILTER_SIZE * FILTER_SIZE_Y * FILTER_SIZE_Z *
           NUM_FILTERS});

  testLayerGrad(config, "conv3D", 10, trans, useGpu);
  // Use small batch_size and useWeight=true to test biasGrad
  testLayerGrad(config, "conv3D", 2, trans, useGpu, true, 0.02);
}

TEST(Layer, test3DConvLayer) {
  test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ false);
2264
#ifdef PADDLE_WITH_CUDA
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
  test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ true);
#endif
}

void test3DDeConvLayer(const string& type, bool trans, bool useGpu) {
  // filter size
  const int NUM_FILTERS = 6;
  // const int CHANNELS = 3;
  const int FILTER_SIZE = 3;
  const int FILTER_SIZE_Y = 3;
  const int FILTER_SIZE_Z = 3;

  // input image
  const int CHANNELS = 3;
  const int IMAGE_SIZE = 4;
  const int IMAGE_SIZE_Y = 6;
  const int IMAGE_SIZE_Z = 6;

  // Setting up conv-trans layer
  TestConfig config;
  config.biasSize = NUM_FILTERS;
  config.layerConfig.set_type("deconv3d");
  config.layerConfig.set_num_filters(NUM_FILTERS);
  config.layerConfig.set_partial_sum(1);
  config.layerConfig.set_shared_biases(true);

  LayerInputConfig* input = config.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();

  conv->set_channels(CHANNELS);
  conv->set_filter_size(FILTER_SIZE);
  conv->set_filter_size_y(FILTER_SIZE_Y);
  conv->set_filter_size_z(FILTER_SIZE_Z);
  conv->set_padding(0);
  conv->set_padding_y(0);
  conv->set_padding_z(0);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_stride_z(2);
2304 2305 2306 2307 2308
  conv->set_output_x(IMAGE_SIZE);
  conv->set_output_y(IMAGE_SIZE_Y);
  conv->set_output_z(IMAGE_SIZE_Z);

  conv->set_img_size(imageSize(conv->output_x(),
C
chengduoZH 已提交
2309 2310 2311 2312
                               conv->filter_size(),
                               conv->padding(),
                               conv->stride(),
                               true));
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
  conv->set_img_size_y(imageSize(conv->output_y(),
                                 conv->filter_size_y(),
                                 conv->padding_y(),
                                 conv->stride_y(),
                                 true));
  conv->set_img_size_z(imageSize(conv->output_z(),
                                 conv->filter_size_z(),
                                 conv->padding_z(),
                                 conv->stride_z(),
                                 true));
  config.layerConfig.set_size(conv->img_size() * conv->img_size_y() *
                              conv->img_size_z() * NUM_FILTERS);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
  conv->set_groups(1);
  conv->set_filter_channels(conv->channels() / conv->groups());
  config.inputDefs.push_back(
      {INPUT_DATA,
       "layer_0",
       CHANNELS * IMAGE_SIZE * IMAGE_SIZE_Y * IMAGE_SIZE_Z,
       conv->filter_channels() * FILTER_SIZE * FILTER_SIZE_Y * FILTER_SIZE_Z *
           NUM_FILTERS});

  testLayerGrad(config, "deconv3D", 10, trans, useGpu);
  // Use small batch_size and useWeight=true to test biasGrad
  testLayerGrad(config, "deconv3D", 2, trans, useGpu, true, 0.02);
}

TEST(Layer, test3DDeConvLayer) {
  test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ false);
2341
#ifdef PADDLE_WITH_CUDA
2342 2343 2344 2345
  test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ true);
#endif
}

G
guosheng 已提交
2346
TEST(Layer, ScaleShiftLayer) {
2347 2348
  const size_t batchSize = 16;
  const size_t size = 32;
G
guosheng 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
  TestConfig config;
  config.layerConfig.set_type("scale_shift");
  config.layerConfig.set_size(size);
  config.biasSize = 1;
  config.inputDefs.push_back(
      {INPUT_DATA, "input", /* dim= */ size, /* paraSize= */ 1});
  config.layerConfig.add_inputs();
  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "scale_shift", batchSize, false, useGpu, false);
  }
}

2361 2362 2363 2364 2365
void testFactorizationMachineLayer(InputType type, bool useGpu) {
  const int FACTOR_SIZE = 10;
  TestConfig config;
  config.layerConfig.set_type("factorization_machine");
  config.layerConfig.set_factor_size(FACTOR_SIZE);
W
wangmeng28 已提交
2366 2367 2368
  config.layerConfig.set_size(1);
  config.biasSize = 0;
  config.inputDefs.push_back({type, "layer_0", 1024, 10240});
2369 2370 2371 2372 2373 2374 2375 2376 2377
  config.layerConfig.add_inputs();
  testLayerGrad(config, "factorization_machine", 16, false, useGpu, false);
}

TEST(Layer, FactorizationMachineLayer) {
  testFactorizationMachineLayer(INPUT_DATA, false);
  testFactorizationMachineLayer(INPUT_DATA, true);
}

Z
zhangjinchao01 已提交
2378 2379 2380 2381 2382 2383 2384
int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  return RUN_ALL_TESTS();
}