api_gen_utils.cc 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_gen_utils.h"
16 17 18 19 20 21

namespace paddle {
namespace experimental {

/* ------------------ for input ----------------------- */

22
std::shared_ptr<phi::DenseTensor> TensorToDenseTensor(const Tensor& tensor) {
23 24 25
  return std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
}

26
std::shared_ptr<phi::DenseTensor> TensorToDenseTensor(
27 28 29 30 31 32 33
    const paddle::optional<Tensor>& tensor) {
  if (tensor) {
    return std::dynamic_pointer_cast<phi::DenseTensor>(tensor->impl());
  }
  return nullptr;
}

34
std::unique_ptr<std::vector<phi::DenseTensor>> TensorToDenseTensor(
35 36 37 38 39 40 41 42 43 44 45 46
    const std::vector<Tensor>& tensors) {
  auto pt_tensors = std::make_unique<std::vector<phi::DenseTensor>>();
  pt_tensors->reserve(tensors.size());

  for (const auto& t : tensors) {
    pt_tensors->push_back(
        *std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }

  return std::move(pt_tensors);
}

47
std::shared_ptr<phi::SelectedRows> TensorToSelectedRows(const Tensor& tensor) {
48 49 50
  return std::dynamic_pointer_cast<phi::SelectedRows>(tensor.impl());
}

51
std::shared_ptr<phi::SelectedRows> TensorToSelectedRows(
52 53 54 55 56 57 58
    const paddle::optional<Tensor>& tensor) {
  if (tensor) {
    return std::dynamic_pointer_cast<phi::SelectedRows>(tensor->impl());
  }
  return nullptr;
}

J
Jack Zhou 已提交
59 60 61 62
std::shared_ptr<phi::StringTensor> TensorToStringTensor(const Tensor& tensor) {
  return std::dynamic_pointer_cast<phi::StringTensor>(tensor.impl());
}

63 64
/* ----------------- for infer_meta --------------------- */

65
phi::MetaTensor MakeMetaTensor(const phi::DenseTensor& tensor) {
66 67 68
  return phi::MetaTensor(tensor);
}

69
std::vector<phi::MetaTensor> MakeMetaTensor(
70
    const std::vector<const phi::DenseTensor*>& tensors) {
71 72
  std::vector<phi::MetaTensor> meta_tensors;
  meta_tensors.reserve(tensors.size());
73 74
  for (const auto* t : tensors) {
    meta_tensors.emplace_back(*t);
75 76 77 78
  }
  return meta_tensors;
}

79 80 81 82 83 84 85 86 87 88
std::vector<phi::MetaTensor> MakeMetaTensor(
    const std::vector<phi::DenseTensor*>& tensors) {
  std::vector<phi::MetaTensor> meta_tensors;
  meta_tensors.reserve(tensors.size());
  for (auto* t : tensors) {
    meta_tensors.emplace_back(*t);
  }
  return meta_tensors;
}

89
phi::MetaTensor MakeMetaTensor(const phi::SelectedRows& tensor) {
90 91 92
  return phi::MetaTensor(tensor);
}

J
Jack Zhou 已提交
93 94 95 96
phi::MetaTensor MakeMetaTensor(const phi::StringTensor& tensor) {
  return phi::MetaTensor(tensor);
}

97 98
/* ------------------ for output ----------------------- */

99
phi::DenseTensor* SetKernelOutput(Backend backend, Tensor* out) {
100 101
  if (out->impl() == nullptr) {
    out->set_impl(std::make_shared<phi::DenseTensor>());
102 103 104 105
  }
  return static_cast<phi::DenseTensor*>(out->impl().get());
}

106 107 108
std::vector<phi::DenseTensor*> SetKernelOutput(size_t out_size,
                                               Backend backend,
                                               std::vector<Tensor>* out) {
109 110 111
  out->reserve(out_size);
  std::vector<phi::DenseTensor*> results(out_size);
  for (size_t i = 0; i < out_size; ++i) {
112
    auto tensor_ptr = std::make_shared<phi::DenseTensor>();
113 114 115 116 117 118 119
    results[i] = tensor_ptr.get();
    out->emplace_back();
    out->back().set_impl(tensor_ptr);
  }
  return results;
}

120
phi::SelectedRows* SetSelectedRowsKernelOutput(Backend backend, Tensor* out) {
121 122 123 124 125 126 127 128
  if (!out->initialized()) {
    auto select_rows = std::make_shared<phi::SelectedRows>();
    out->set_impl(select_rows);
    return select_rows.get();
  }
  return static_cast<phi::SelectedRows*>(out->impl().get());
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
phi::TensorBase* SetSparseKernelOutput(Tensor* out, TensorType type) {
  if (!out->initialized()) {
    if (type == TensorType::SPARSE_COO) {
      auto sparse_tensor = std::make_shared<phi::SparseCooTensor>(
          phi::DenseTensor(), phi::DenseTensor(), phi::DDim{-1});
      out->set_impl(sparse_tensor);
      return sparse_tensor.get();
    } else if (type == TensorType::SPARSE_CSR) {
      auto sparse_tensor =
          std::make_shared<phi::SparseCsrTensor>(phi::DenseTensor(),
                                                 phi::DenseTensor(),
                                                 phi::DenseTensor(),
                                                 phi::DDim{-1});
      out->set_impl(sparse_tensor);
      return sparse_tensor.get();
    } else {
      auto dense_tensor = std::make_shared<phi::DenseTensor>();
      out->set_impl(dense_tensor);
      return dense_tensor.get();
    }
  }
  return out->impl().get();
}

J
Jack Zhou 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
phi::TensorBase* SetStringsKernelOutput(Backend backend,
                                        Tensor* out,
                                        TensorType type) {
  if (!out->initialized()) {
    if (type == TensorType::STRING_TENSOR) {
      if (out->impl() == nullptr) {
        auto strings_tensor = std::make_shared<phi::StringTensor>();
        out->set_impl(strings_tensor);
      }
      return out->impl().get();
    }
  }
  return out->impl().get();
}

168 169
}  // namespace experimental
}  // namespace paddle