custom_operator.cc 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

28
#include "paddle/fluid/eager/api/utils/global_utils.h"
29
#include "paddle/fluid/framework/attribute.h"
30
#include "paddle/fluid/framework/convert_utils.h"
31 32
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
33
#include "paddle/fluid/framework/phi_utils.h"
34
#include "paddle/fluid/framework/tensor.h"
35
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
36 37
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"
38 39
#include "paddle/phi/api/all.h"
#include "paddle/phi/core/compat/convert_utils.h"
40
#include "paddle/phi/core/tensor_utils.h"
41
#include "paddle/utils/any.h"
H
HongyuJia 已提交
42 43 44
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/backends/device_manager.h"
#endif
45

46
#include "gflags/gflags.h"
47
#include "paddle/phi/api/include/operants_manager.h"
48 49 50 51
#include "paddle/phi/api/include/tensor_operants.h"

DECLARE_string(tensor_operants_mode);

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
67 68 69 70
      func,
      platform::errors::NotFound(
          "Failed to load dynamic operator library, error message(%s).",
          errorno));
71 72 73
  return func;
}

74
inline static bool IsDuplicableVar(const std::string& var_name) {
75 76 77 78
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

79 80
inline static std::string NoGrad(const std::string& var_name,
                                 bool is_double_grad = false) {
81
  std::string suffix = kGradVarSuffix;
82 83 84 85 86 87 88 89
  std::string new_out_suffix = kDoubleGradNewOutSuffix;
  std::string tmp_var_name(var_name);
  if (is_double_grad &&
      (tmp_var_name.rfind(new_out_suffix) != std::string::npos)) {
    tmp_var_name = tmp_var_name.substr(
        0, tmp_var_name.size() - /*kDoubleGradNewOutSuffix length*/ 4);
  }
  return tmp_var_name.substr(0, tmp_var_name.size() - kGradVarSuffixSize);
90 91
}

92 93 94 95 96 97 98 99 100 101 102
inline static bool IsGradVar(const std::string& var_name, bool is_double_grad) {
  std::string suffix = kGradVarSuffix;
  if (!is_double_grad) {
    return var_name.rfind(suffix) != std::string::npos;
  } else {
    // for double grad cases, the X@GRAD is not a grad var, X@GRAD@GRAD is a
    // grad var, here we remove a @GRAD suffix
    return NoGrad(var_name).rfind(suffix) != std::string::npos;
  }
}

103 104
inline static bool IsMemberOf(const std::vector<std::string>& vec,
                              const std::string& name) {
105 106 107
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

108
static std::vector<std::string> ParseAttrStr(const std::string& attr) {
109
  auto split_pos = attr.find_first_of(":");
110 111
  PADDLE_ENFORCE_NE(split_pos,
                    std::string::npos,
112 113 114 115 116 117 118 119 120 121
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

122
  VLOG(3) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];
123 124 125 126

  return rlt;
}

127 128 129 130 131
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
132 133 134 135 136 137 138
static void RunKernelFunc(
    const framework::ExecutionContext& ctx,
    const paddle::KernelFunc& func,
    const std::vector<std::string>& inputs,
    const std::vector<std::string>& outputs,
    const std::vector<std::string>& attrs,
    const std::unordered_map<std::string, std::string>& inplace_map) {
139
  VLOG(3) << "Custom Operator: Start run KernelFunc.";
140 141
  // prepare CustomOpKernelContext
  paddle::CustomOpKernelContext kernel_ctx;
142
  for (auto& in_name : inputs) {
143
    VLOG(3) << "Custom Operator: input name - " << in_name;
144
    if (detail::IsDuplicableVar(in_name)) {
145 146
      // return const std::vector<const phi::DenseTensor*>
      auto vec_x = ctx.MultiInput<phi::DenseTensor>(in_name);
147 148
      PADDLE_ENFORCE_NE(vec_x.empty(),
                        true,
149 150
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
151
      std::vector<paddle::Tensor> custom_vec_in;
152 153 154
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
155 156 157 158 159 160 161
            x,
            platform::errors::NotFound(
                "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                i,
                in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(),
                          true,
162 163 164
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
165 166
                              i,
                              in_name));
167
        paddle::Tensor custom_t;
168
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*x));
169 170
        custom_vec_in.emplace_back(custom_t);
      }
171
      kernel_ctx.EmplaceBackInputs(std::move(custom_vec_in));
172
    } else {
173
      auto* x = ctx.Input<phi::DenseTensor>(in_name);
174 175 176 177 178
      PADDLE_ENFORCE_NOT_NULL(
          x,
          platform::errors::NotFound("Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(),
                        true,
179 180
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
181
      paddle::Tensor custom_in;
182
      custom_in.set_impl(std::make_shared<phi::DenseTensor>(*x));
183 184 185 186 187 188 189 190 191 192
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (custom_in.is_gpu_pinned()) {
        VLOG(3) << "Custom Operator: custom input is gpu pinned tensor";
        auto gpu_place = phi::GPUPlace(platform::GetCurrentDeviceId());
        auto custom_gpu_in = custom_in.copy_to(gpu_place, true);
        kernel_ctx.EmplaceBackInput(std::move(custom_gpu_in));
      } else {
        kernel_ctx.EmplaceBackInput(std::move(custom_in));
      }
#else
193
      kernel_ctx.EmplaceBackInput(std::move(custom_in));
194
#endif
195
    }
196 197
  }

198 199 200 201 202
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
203
      kernel_ctx.EmplaceBackAttr(ctx.Attr<bool>(attr_name));
204
    } else if (attr_type_str == "int") {
205
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int>(attr_name));
206
    } else if (attr_type_str == "float") {
207
      kernel_ctx.EmplaceBackAttr(ctx.Attr<float>(attr_name));
208
    } else if (attr_type_str == "int64_t") {
209
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int64_t>(attr_name));
210
    } else if (attr_type_str == "std::string") {
211
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::string>(attr_name));
212
    } else if (attr_type_str == "std::vector<int>") {
213
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int>>(attr_name));
214
    } else if (attr_type_str == "std::vector<float>") {
215
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<float>>(attr_name));
216
    } else if (attr_type_str == "std::vector<int64_t>") {
217
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int64_t>>(attr_name));
218
    } else if (attr_type_str == "std::vector<std::string>") {
219
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<std::string>>(attr_name));
220 221 222 223 224
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
225
          "`std::vector<float>`, `std::vector<int64_t>`, "
226 227 228 229 230
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
231

232 233
  VLOG(3) << "Custom Operator: push outputs into CustomOpKernelContext.";
  // cache the target tensor pointers
234
  std::vector<phi::DenseTensor*> true_out_ptrs;
235 236 237 238 239 240 241 242
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                     platform::errors::PreconditionNotMet(
                         "If custom operator's outputs contains `paddle::Vec("
                         ")` type, "
                         "it only can hold one output."));
243
      auto vec_out = ctx.MultiOutput<phi::DenseTensor>(out_name);
244 245
      PADDLE_ENFORCE_NE(vec_out.empty(),
                        true,
246 247
                        platform::errors::NotFound(
                            "Output vector<tensor> (%s) is empty.", out_name));
248
      std::vector<paddle::Tensor> custom_vec_out;
249 250 251 252 253
      for (size_t j = 0; j < vec_out.size(); ++j) {
        auto* out = vec_out[j];
        PADDLE_ENFORCE_NOT_NULL(
            out,
            platform::errors::NotFound(
254 255
                "The %d-th tensor in output vector<tensor> (%s) is nullptr.",
                j,
256 257
                out_name));
        true_out_ptrs.emplace_back(out);
258
        paddle::Tensor custom_t;
259
        // here only can copy the output tensor into context
260
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*out));
261 262 263 264
        custom_vec_out.emplace_back(custom_t);
      }
      kernel_ctx.EmplaceBackOutputs(std::move(custom_vec_out));
    } else {
265
      auto* out = ctx.Output<phi::DenseTensor>(out_name);
266 267 268
      PADDLE_ENFORCE_NOT_NULL(out,
                              platform::errors::NotFound(
                                  "Output tensor (%s) is nullptr.", out_name));
269
      true_out_ptrs.emplace_back(out);
270
      paddle::Tensor custom_out;
271
      // here only can copy the output tensor into context
272
      custom_out.set_impl(std::make_shared<phi::DenseTensor>(*out));
273 274 275
      kernel_ctx.EmplaceBackOutput(std::move(custom_out));
    }
  }
276

277 278
  try {
    VLOG(3) << "Custom Operator: Run ComputeFunc.";
279 280

    FLAGS_tensor_operants_mode = "phi";
281 282
    if (paddle::OperantsManager::Instance().phi_operants.get() == nullptr) {
      paddle::OperantsManager::Instance().phi_operants.reset(
283 284 285 286
          new paddle::operants::PhiTensorOperants());
      VLOG(4) << "Initialize phi tensor operants successfully";
    }

287
    // handle inplace map
288
    kernel_ctx.MapPlainOutputs(inputs, outputs, inplace_map);
289
    func(&kernel_ctx);
290
    kernel_ctx.AssignInplaceOutputs();
291 292 293 294

    // sync output tensor data into original output
    auto* calc_outs = kernel_ctx.AllMutableOutput();
    PADDLE_ENFORCE_EQ(
295 296
        true_out_ptrs.size(),
        calc_outs->size(),
297 298 299 300
        platform::errors::InvalidArgument(
            "The number of element in custom operator outputs is wrong, "
            "expected contains %d Tensors, but actually contains %d "
            "Tensors.",
301 302
            true_out_ptrs.size(),
            calc_outs->size()));
303 304 305
    for (size_t i = 0; i < true_out_ptrs.size(); ++i) {
      auto* true_out = true_out_ptrs.at(i);
      auto calc_out =
306
          std::dynamic_pointer_cast<phi::DenseTensor>(calc_outs->at(i).impl());
307
      // assign meta info
308
      auto* true_out_meta = phi::DenseTensorUtils::GetMutableMeta(true_out);
309 310 311
      true_out_meta->dims = calc_out->dims();
      true_out_meta->dtype = calc_out->dtype();
      true_out_meta->layout = calc_out->layout();
312 313
      true_out_meta->offset = calc_out->offset();
      // lod no need to be reset
314 315 316
      // reset holder if needed
      if (true_out->Holder() != calc_out->Holder()) {
        true_out->ResetHolder(calc_out->Holder());
317
      }
318 319 320 321 322 323 324
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
325
        "Custom operator raises an unknown exception in runtime."));
326 327 328
  }
}

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
static void RunInferShapeFunc(framework::InferShapeContext* ctx,
                              const paddle::InferShapeFunc& func,
                              const std::vector<std::string>& inputs,
                              const std::vector<std::string>& outputs,
                              const std::vector<std::string>& attrs) {
  std::vector<std::vector<int64_t>> input_shapes;
  std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;

  VLOG(3) << "Custom Operator: InferShape - get input ddim.";
  for (auto& in_name : inputs) {
    if (detail::IsDuplicableVar(in_name)) {
      OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
      auto vec_ddim = ctx->GetInputsDim(in_name);
      std::vector<std::vector<int64_t>> vec_shape;
      vec_shape.reserve(vec_ddim.size());
344 345
      std::transform(vec_ddim.begin(),
                     vec_ddim.end(),
346 347
                     std::back_inserter(vec_shape),
                     [&](const DDim& ddim) -> std::vector<int64_t> {
348
                       return phi::vectorize(ddim);
349 350 351 352 353
                     });
      vec_input_shapes.emplace_back(vec_shape);
    } else {
      OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
      auto ddim = ctx->GetInputDim(in_name);
354
      input_shapes.emplace_back(phi::vectorize(ddim));
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    }
  }

  std::vector<paddle::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
      // attr type, because the input type is std::vector<int64_t>, only
      // can use one rule to parse std::vector<int64_t> parameter
      continue;
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
          "`std::vector<float>`, `std::vector<std::string>`, "
          "Please check whether the attribute data type and "
          "data type string are matched.",
          attr_type_str));
    }
  }

  VLOG(3) << "Custom Operator: InferShape - calc output ddim.";
  auto output_shapes = func(input_shapes, vec_input_shapes, custom_attrs);

  VLOG(3) << "Custom Operator: InferShape - set output ddim.";
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      std::vector<DDim> vec_ddim;
      vec_ddim.reserve(output_shapes.size());
407 408
      std::transform(output_shapes.begin(),
                     output_shapes.end(),
409 410
                     std::back_inserter(vec_ddim),
                     [&](const std::vector<int64_t>& shape) -> DDim {
411
                       return phi::make_ddim(shape);
412 413 414
                     });
      ctx->SetOutputsDim(out_name, vec_ddim);
    } else {
415
      ctx->SetOutputDim(out_name, phi::make_ddim(output_shapes[i]));
416 417 418 419
    }
  }
}

420 421 422 423 424 425 426 427 428
//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
429
    VLOG(3) << "Custom Operator: Dummy infer shape of custom operator.";
430 431 432 433 434 435 436 437 438 439 440 441
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
442
  phi::KernelKey GetExpectedKernelType(
443
      const framework::ExecutionContext& ctx) const override {
444
    return phi::KernelKey(ctx.GetPlace());
445 446 447 448 449 450 451
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
452
  phi::KernelKey GetKernelTypeForVar(
453
      const std::string& var_name,
454
      const phi::DenseTensor& tensor,
455 456 457 458
      const phi::KernelKey& expected_kernel_type) const override {
    return phi::KernelKey(phi::Backend::ALL_BACKEND,
                          tensor.layout(),
                          expected_kernel_type.dtype());
459 460 461 462 463 464 465 466 467 468 469 470
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
471 472 473 474 475 476
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
477 478
    }
    for (auto& out_name : outputs_) {
479 480 481 482 483 484
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
485
    }
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
525
            "`std::vector<float>`, `std::vector<int64_t>`, "
526 527 528 529 530
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
531 532 533
    AddComment(R"DOC(
Custom Operator.

534
According to the phi::DenseTensor operation function implemented by the user
535
independently of the framework, it is encapsulated into a framework
H
HongyuJia 已提交
536 537
operator to adapt to various execution scenarios such as dynamic graph
mode, static graph mode, and inference mode.
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
555 556
      const OpDesc& fwd_op,
      const std::unordered_set<std::string>& no_grad_set,
557
      std::unordered_map<std::string, std::string>* grad_to_var,
558 559
      const std::vector<BlockDesc*>& grad_block,
      const std::string& name,
560
      const std::vector<std::string>& inputs,
561 562
      const std::vector<std::string>& outputs,
      bool is_double_grad)
563 564 565
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
566 567
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
568 569 570 571 572 573 574 575 576

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
577
      VLOG(3) << "Custom Operator: GradOpDescMaker - input: " << in_name;
578
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
594
      VLOG(3) << "Custom Operator: GradOpDescMaker - output: " << out_name;
595
      if (detail::IsDuplicableVar(out_name)) {
596
        grad_op->SetOutput(
597 598 599
            out_name,
            this->InputGrad(detail::NoGrad(out_name, is_double_grad_),
                            /*drop_empty_grad=*/false));
600
      } else {
601 602 603
        grad_op->SetOutput(
            out_name,
            this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
604
      }
605
    }
606
    grad_op->SetAttrMap(this->Attrs());
607 608 609 610 611 612
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
613
  bool is_double_grad_{false};
614 615 616 617 618 619 620 621 622 623 624 625
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
626 627 628 629
      const std::string& name,
      const std::vector<std::string>& inputs,
      const std::vector<std::string>& outputs,
      bool is_double_grad)
630 631 632 633
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
634 635
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
636 637 638 639 640 641 642 643 644 645 646 647 648 649

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
650
      VLOG(3) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
651
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
667
      VLOG(3) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
668 669
      grad_op->SetOutput(
          out_name, this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
670
    }
671
    grad_op->SetAttrMap(this->Attrs());
672 673 674 675 676 677
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
678
  bool is_double_grad_{false};
679 680 681 682
};

//////////// Operator and Kernel Register //////////////

683 684 685
static void RegisterOperatorKernelWithPlace(
    const std::string& name,
    const OperatorWithKernel::OpKernelFunc& op_kernel_func,
686 687
    const proto::VarType::Type type,
    const platform::Place& place) {
688
  OpKernelType key(type, place);
689
  VLOG(3) << "Custom Operator: op kernel key: " << key;
690
  OperatorWithKernel::AllOpKernels()[name][key] = op_kernel_func;
691 692
}

693 694 695 696 697 698 699 700
static void RegisterOperatorKernel(
    const std::string& name,
    const paddle::KernelFunc& kernel_func,
    const std::vector<std::string>& inputs,
    const std::vector<std::string>& outputs,
    const std::vector<std::string>& attrs,
    const std::unordered_map<std::string, std::string>& inplace_map,
    void* dso_handle) {
701
  VLOG(3) << "Custom Operator: op name in kernel: " << name;
702 703 704 705 706
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
707 708 709
  OperatorWithKernel::OpKernelFunc op_kernel_func;
  if (kernel_func) {
    VLOG(3) << "Register custom operator " << name << " with kernel func";
710
    op_kernel_func = [kernel_func, inputs, outputs, attrs, inplace_map](
711
                         const framework::ExecutionContext& ctx) {
712
      VLOG(3) << "Custom Operator: run custom kernel func in lambda.";
713
      RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs, inplace_map);
714 715 716 717 718 719 720 721 722 723 724 725 726
    };
  } else {
    VLOG(3) << "Register custom operator " << name
            << " with raw op kernel func";
    PADDLE_ENFORCE_NOT_NULL(
        dso_handle,
        platform::errors::InvalidArgument(
            "The dso handle must be provided if kernel_func is nullptr."));
    using OpKernelFuncPtr = void(const framework::ExecutionContext&);
    auto symbol_name = "PD_" + name + "_raw_op_kernel_func";
    auto* func = detail::DynLoad<OpKernelFuncPtr>(dso_handle, symbol_name);
    op_kernel_func = func;
  }
727 728
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::CPUPlace());
729
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
730 731
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::CUDAPlace());
732
#endif
733 734 735 736
#if defined(PADDLE_WITH_XPU)
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::XPUPlace());
#endif
H
HongyuJia 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  for (const auto& dev_type : device_types) {
    for (size_t dev_id = 0;
         dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
         dev_id++) {
      RegisterOperatorKernelWithPlace(name,
                                      op_kernel_func,
                                      proto::VarType::RAW,
                                      platform::CustomPlace(dev_type, dev_id));
    }
  }
#endif
750 751
}

752 753
void RegisterOperatorWithMetaInfo(const std::vector<OpMetaInfo>& op_meta_infos,
                                  void* dso_handle) {
754 755 756 757 758 759
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
760 761

  if (OpInfoMap::Instance().Has(op_name)) {
762
    LOG(WARNING) << "Operator (" << op_name << ") has been registered.";
763 764 765
    return;
  }

766 767 768
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
769
  auto& op_inplace_map = OpMetaInfoHelper::GetInplaceMap(base_op_meta);
770 771 772 773
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

774 775
  VLOG(3) << "Custom Operator: forward, op name: " << op_name;
  VLOG(3) << "Custom Operator: forward, op inputs: "
776
          << string::join_strings(op_inputs, ',');
777
  VLOG(3) << "Custom Operator: forward, op outputs: "
778
          << string::join_strings(op_outputs, ',');
779
  VLOG(3) << "Custom Operator: forward, op attrs: "
780
          << string::join_strings(op_attrs, ',');
781 782 783 784 785 786
  if (!op_inplace_map.empty()) {
    VLOG(3) << "Custom Operator: forward, op inplace_map: "
            << string::join_strings(op_inplace_map, ',', [](auto& pair) {
                 return pair.first + ": " + pair.second;
               });
  }
787 788

  // Op
789 790
  info.creator_ = [](const std::string& op_name,
                     const VariableNameMap& inputs,
791 792 793 794 795 796 797 798 799 800 801 802 803
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
804 805
      info.proto_->IsInitialized(),
      true,
806 807
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
808 809
          op_name,
          info.proto_->InitializationErrorString()));
810

811 812 813 814 815 816 817
  // Inplace
  if (!op_inplace_map.empty()) {
    info.infer_inplace_ = [op_inplace_map](bool use_cuda) {
      return op_inplace_map;
    };
  }

818
  // InferShape
819 820 821 822
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
823 824
          op_inputs.size(),
          1UL,
825 826 827
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
828 829 830
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
831 832 833
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
834 835
          op_outputs.size(),
          1UL,
836 837 838
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
839 840 841
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
842 843 844
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

845
      VLOG(3) << "Custom Operator: Default InferShape - share ddim.";
846 847 848
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
849 850
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs, infer_shape_func](
                            InferShapeContext* ctx) {
851
      RunInferShapeFunc(ctx, infer_shape_func, op_inputs, op_outputs, op_attrs);
852 853
    };
  }
854 855

  // Infer Dtype
856
  if (infer_dtype_func == nullptr) {
857
    // use default InferDtype
858 859
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
860 861
          op_inputs.size(),
          1UL,
862 863 864
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
865 866 867
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
868 869 870
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
871 872
          op_outputs.size(),
          1UL,
873 874 875
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
876 877 878
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
879 880 881
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

882
      VLOG(3) << "Custom Operator: InferDtype - share dtype.";
883 884 885 886
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
    info.infer_var_type_ =
        [op_inputs, op_outputs, infer_dtype_func](InferVarTypeContext* ctx) {
          std::vector<DataType> input_dtypes;
          std::vector<std::vector<DataType>> vec_input_dtypes;

          VLOG(3) << "Custom Operator: InferDtype - get input dtype.";
          for (auto& in_name : op_inputs) {
            if (detail::IsDuplicableVar(in_name)) {
              std::vector<DataType> vec_custom_dtype;
              for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
                auto dtype = ctx->GetInputDataType(in_name, i);
                vec_custom_dtype.emplace_back(
                    paddle::framework::TransToPhiDataType(dtype));
              }
              vec_input_dtypes.emplace_back(vec_custom_dtype);
            } else {
              auto dtype = ctx->GetInputDataType(in_name);
              input_dtypes.emplace_back(
                  paddle::framework::TransToPhiDataType(dtype));
            }
907
          }
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
          VLOG(3) << "Custom Operator: InferDtype - infer output dtype.";
          auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);

          VLOG(3) << "Custom Operator: InferDtype - set output dtype.";
          for (size_t i = 0; i < op_outputs.size(); ++i) {
            auto out_name = op_outputs[i];
            if (detail::IsDuplicableVar(out_name)) {
              for (size_t j = 0; j < output_dtypes.size(); ++j) {
                auto dtype =
                    paddle::framework::TransToProtoVarType(output_dtypes[i]);
                ctx->SetOutputDataType(out_name, dtype, j);
              }
            } else {
              ctx->SetOutputDataType(
                  out_name,
                  paddle::framework::TransToProtoVarType(output_dtypes[i]));
            }
926
          }
927
        };
928
  }
929 930

  // Kernel func
931 932 933 934 935 936 937
  RegisterOperatorKernel(op_name,
                         kernel_fn,
                         op_inputs,
                         op_outputs,
                         op_attrs,
                         op_inplace_map,
                         dso_handle);
938 939 940 941 942 943 944 945 946

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
947
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
948
    auto& grad_op_inplace_map = OpMetaInfoHelper::GetInplaceMap(cur_grad_op);
949
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);
950
    auto& grad_infer_shape_fn = OpMetaInfoHelper::GetInferShapeFn(cur_grad_op);
951

952 953
    VLOG(3) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(3) << "Custom Operator: backward, op inputs: "
954
            << string::join_strings(grad_op_inputs, ',');
955
    VLOG(3) << "Custom Operator: backward, op outputs: "
956
            << string::join_strings(grad_op_outputs, ',');
957 958 959 960 961 962 963 964
    VLOG(3) << "Custom Operator: backward, op attrs: "
            << string::join_strings(grad_op_attrs, ',');
    if (!op_inplace_map.empty()) {
      VLOG(3) << "Custom Operator: backward, op inplace_map: "
              << string::join_strings(grad_op_inplace_map, ',', [](auto& pair) {
                   return pair.first + ": " + pair.second;
                 });
    }
965

966 967
    bool is_double_grad = (i == 2);

968
    // GradOpDescMaker
969 970 971 972 973 974
    info.grad_op_maker_ =
        [grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad](
            const OpDesc& fwd_op,
            const std::unordered_set<std::string>& no_grad_set,
            std::unordered_map<std::string, std::string>* grad_to_var,
            const std::vector<BlockDesc*>& grad_block) {
975 976 977 978 979 980 981 982
          CustomGradOpMaker<paddle::framework::OpDesc> maker(fwd_op,
                                                             no_grad_set,
                                                             grad_to_var,
                                                             grad_block,
                                                             grad_op_name,
                                                             grad_op_inputs,
                                                             grad_op_outputs,
                                                             is_double_grad);
983 984
          return maker();
        };
985 986

    // GradOpBaseMaker
987 988 989 990 991 992 993 994
    info.dygraph_grad_op_maker_ =
        [grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad](
            const std::string& type,
            const imperative::NameVarBaseMap& var_base_map_in,
            const imperative::NameVarBaseMap& var_base_map_out,
            const framework::AttributeMap& attrs,
            const framework::AttributeMap& default_attrs,
            const std::map<std::string, std::string>& inplace_map) {
995 996 997 998 999 1000 1001 1002 1003
          CustomGradOpMaker<paddle::imperative::OpBase> maker(type,
                                                              var_base_map_in,
                                                              var_base_map_out,
                                                              attrs,
                                                              inplace_map,
                                                              grad_op_name,
                                                              grad_op_inputs,
                                                              grad_op_outputs,
                                                              is_double_grad);
1004 1005 1006
          maker.SetDygraphDefaultAttrsMap(default_attrs);
          return maker();
        };
1007 1008 1009 1010 1011

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
1012 1013 1014 1015 1016 1017
    grad_info.creator_ = [](const std::string& type,
                            const VariableNameMap& inputs,
                            const VariableNameMap& outputs,
                            const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };
1018

1019
    // Grad InferShape
1020
    if (grad_infer_shape_fn == nullptr) {
1021 1022
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs,
1023
                                is_double_grad](InferShapeContext* ctx) {
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
        // 1. if forward input exists, gradient's shape is same with forward
        // input
        // default
        //    [Suitable for most situations]
        // 2. if forward input not exists, and only contains one grad input and
        // output,
        //    use grad input shape as grad output shape
        //    [Suitable for the situation that forward input is not used as
        //    backward input]
        for (auto& out_name : grad_op_outputs) {
1034
          auto fwd_name = detail::NoGrad(out_name, is_double_grad);
1035 1036
          if (detail::IsDuplicableVar(fwd_name)) {
            // Duplicable forward var must as backward input
1037 1038
            ctx->ShareDim(fwd_name, out_name);
          } else {
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
            if (ctx->HasInput(fwd_name)) {
              ctx->ShareDim(fwd_name, out_name);
            } else {
              PADDLE_ENFORCE_EQ(
                  grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                  true,
                  platform::errors::Unavailable(
                      "Custom grad operator infershape error. "
                      "If a custom grad operator contains only one input and "
                      "only one output, the input shape will be directly set "
H
HongyuJia 已提交
1049 1050 1051
                      "to the output shape. Otherwise, Please set the forward "
                      "input as the grad operator's input or  set the "
                      "InferShapeFn of custom grad operator by "
1052 1053 1054
                      ".SetInferShapeFn(PD_INFER_SHAPE(...))"));
              ctx->ShareDim(grad_op_inputs[0], out_name);
            }
1055 1056
          }
        }
1057 1058
      };
    } else {
1059 1060 1061
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs,
                                grad_op_attrs,
1062
                                grad_infer_shape_fn](InferShapeContext* ctx) {
1063 1064 1065 1066 1067
        RunInferShapeFunc(ctx,
                          grad_infer_shape_fn,
                          grad_op_inputs,
                          grad_op_outputs,
                          grad_op_attrs);
1068 1069
      };
    }
1070 1071

    // Kernel func
1072 1073 1074 1075 1076
    RegisterOperatorKernel(grad_op_name,
                           grad_kernel_fn,
                           grad_op_inputs,
                           grad_op_outputs,
                           grad_op_attrs,
1077
                           grad_op_inplace_map,
1078
                           dso_handle);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
1090
    const paddle::OpMetaInfoMap& op_meta_info_map, void* dso_handle) {
1091
  auto& meta_info_map = op_meta_info_map.GetMap();
1092
  VLOG(3) << "Custom Operator: size of op meta info map - "
1093 1094 1095
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
1096
    VLOG(3) << "Custom Operator: pair first -> op name: " << pair.first;
1097
    RegisterOperatorWithMetaInfo(pair.second, dso_handle);
1098 1099 1100 1101 1102 1103
  }
}

////////////////////// User APIs ///////////////////////

// load op api
1104 1105
const std::unordered_map<std::string, std::vector<OpMetaInfo>>&
LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
1106
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);
1107
  VLOG(3) << "load custom_op lib: " << dso_name;
1108 1109 1110 1111
  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();
1112
  RegisterOperatorWithMetaInfoMap(op_meta_info_map, handle);
1113
  return op_meta_info_map.GetMap();
1114 1115 1116 1117
}

}  // namespace framework
}  // namespace paddle