process_group_bkcl.cc 24.6 KB
Newer Older
J
james 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
Wen Sun 已提交
15
#include "paddle/fluid/distributed/collective/process_group_bkcl.h"
J
james 已提交
16

W
Wen Sun 已提交
17
#include "paddle/fluid/distributed/collective/bkcl_tools.h"
W
Wen Sun 已提交
18
#include "paddle/fluid/distributed/collective/common.h"
19
#include "paddle/fluid/distributed/collective/utils.h"
J
james 已提交
20 21
#include "paddle/fluid/platform/device/xpu/bkcl_helper.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
H
Huang Jiyi 已提交
22
#include "paddle/phi/api/lib/utils/allocator.h"
23
#include "paddle/phi/core/device_context.h"
24
#include "paddle/phi/core/distributed/check/static_check.h"
25
#include "paddle/phi/core/enforce.h"
26
#include "paddle/phi/core/errors.h"
J
james 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

namespace paddle {
namespace distributed {
using XPUDeviceContext = paddle::platform::XPUDeviceContext;

ProcessGroupBKCL::BKCLTask::BKCLTask(const Place& place,
                                     int rank,
                                     CommType comm_type,
                                     bool sync_op,
                                     bool use_calc_stream)
    : TaskStream(rank, comm_type, sync_op, use_calc_stream), place_(place) {
  comm_event_ = std::make_shared<XPUEventManager>();
}

ProcessGroupBKCL::BKCLTask::~BKCLTask() {}

bool ProcessGroupBKCL::BKCLTask::IsCompleted() {
  LOG_FIRST_N(WARNING, 1) << "XPU do not support event query now.";
  return true;
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupBKCL::BKCLTask::Wait(std::chrono::milliseconds timeout) {
  // Warning here when use calc stream but also invoke waiting explicitly.
  if (UseCalcStream()) {
    VLOG(3) << "Warning: The communication is on calc stream, wait here is "
               "useless.";
    return true;
  }

  const auto* calc_ctx = static_cast<XPUContext*>(
      platform::DeviceContextPool::Instance().Get(place_));
  comm_event_->Block(*calc_ctx);

  if (barrier_) {
    // If we use the work to do barrier, we should block cpu
63 64 65 66 67

    // TODO(zhangxiaoci) There is no such function that can sync entire device
    // for xpu (for now), so all we can do is sync whatever stream that we know
    // and hope for the best. Note that for correctness the communication stream
    // needs to be in sync mode.
J
james 已提交
68 69
    platform::XPUDeviceGuard guard(place_.GetDeviceId());
    xpu_wait();
70
    calc_ctx->Wait();
J
james 已提交
71 72 73 74 75 76 77
  }
  return true;
}

// Same as Wait
void ProcessGroupBKCL::BKCLTask::Synchronize() { Wait(kWaitTimeout); }

78 79 80 81 82
ProcessGroupBKCL::ProcessGroupBKCL(
    const std::shared_ptr<phi::distributed::Store>& store,
    int rank,
    int size,
    int gid)
83
    : ProcessGroupWithStream(rank, size, gid), store_(store) {}
J
james 已提交
84 85

void ProcessGroupBKCL::GroupStart() {
86
  VLOG(3) << "bkcl_group_start";
J
james 已提交
87 88 89 90
  PADDLE_ENFORCE_XPU_SUCCESS(bkcl_group_start());
}

void ProcessGroupBKCL::GroupEnd() {
91
  VLOG(3) << "bkcl_group_end";
J
james 已提交
92 93 94
  PADDLE_ENFORCE_XPU_SUCCESS(bkcl_group_end());
}

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Recv(
    phi::DenseTensor* tensor,
    int src_rank,
    int64_t offset,
    int64_t numel,
    bool sync_op,
    bool use_calc_stream) {
  // numel > 0 indicates the tensor need to be sliced
  phi::DenseTensor partial_tensor;
  if (numel > 0) {
    partial_tensor = GetPartialTensor(*tensor, offset, numel);
    tensor = &partial_tensor;
  }

  return Collective(
      tensor,
      // have to pass a tensor here
      // TODO(zhangxiaoci) catch up with nccl's api
      *tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
118 119 120 121 122 123 124 125 126
        VLOG(3) << "bkcl_recv";
        int r = bkcl_recv(comm,
                          output->data(),
                          output->numel(),
                          src_rank,
                          platform::ToBKCLDataType(
                              framework::TransToProtoVarType(output->type())),
                          stream);
        return r;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
      },
      CommType::RECV,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Send(
    const phi::DenseTensor& tensor,
    int dst_rank,
    int64_t offset,
    int64_t numel,
    bool sync_op,
    bool use_calc_stream) {
  // numel > 0 indicates the tensor need to be sliced
  const phi::DenseTensor& tensor_maybe_partial =
      numel > 0 ? GetPartialTensor(tensor, offset, numel) : tensor;

  return Collective(
      nullptr,
      tensor_maybe_partial,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
151 152 153 154 155 156 157 158 159
        VLOG(3) << "bkcl_send";
        int r = bkcl_send(comm,
                          input.data(),
                          input.numel(),
                          dst_rank,
                          platform::ToBKCLDataType(
                              framework::TransToProtoVarType(input.type())),
                          stream);
        return r;
160 161 162 163 164 165
      },
      CommType::SEND,
      sync_op,
      use_calc_stream);
}

J
james 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
std::shared_ptr<ProcessGroupBKCL::BKCLTask> ProcessGroupBKCL::CreateTask(
    const Place& place,
    int rank,
    CommType comm_type,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupBKCL::BKCLTask>(
      place, rank, comm_type, is_sync, use_calc_stream);
}

void ProcessGroupBKCL::BroadcastUniqueBKCLID(BKCLUniqueId* bkcl_id) {
  auto key = "ProcessGroupBKCL/bkcl_ids/" + std::to_string(gid_) + "/0";
  if (rank_ == 0) {
    auto id = std::vector<uint8_t>(
        reinterpret_cast<uint8_t*>(bkcl_id),
        reinterpret_cast<uint8_t*>(bkcl_id) + BKCL_UNIQUE_ID_BYTES);
    store_->set(key, id);
  } else {
    const auto& ret = store_->get(key);
    std::memcpy(bkcl_id, ret.data(), ret.size());
  }
}

void ProcessGroupBKCL::CreateBKCLEnvCache(const Place& place,
                                          const std::string& place_key) {
191
  platform::XPUDeviceGuard guard(place.GetDeviceId());
J
james 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  BKCLUniqueId bkcl_id;
  if (rank_ == 0) {
    PADDLE_ENFORCE_XPU_SUCCESS(bkcl_get_unique_id(&bkcl_id));
  }
  BroadcastUniqueBKCLID(&bkcl_id);

  VLOG(3) << "init bkcl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << place_key
          << ", bkcl uniqueid: " << SerializeBKCLUniqueId(bkcl_id);

  calc_event_ = std::make_shared<XPUEventManager>();
  auto* calc_ctx = static_cast<phi::XPUContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  // must use XPUDeviceContext here to make sure XPUContext::Init() is called
  auto comm_ctx = std::make_unique<XPUDeviceContext>(place);
R
Roc 已提交
207 208 209 210 211
  // set allocator
  comm_ctx->SetAllocator(memory::allocation::AllocatorFacade::Instance()
                             .GetAllocator(place)
                             .get());

J
james 已提交
212 213 214
  BKCLContext_t bkcl_comm;
  BKCLCHECK(bkcl_init_rank(&bkcl_comm, GetRank(), GetSize(), &bkcl_id));
  comm_ctx->SetBkclContext(bkcl_comm);
215 216
  // comm context creates a separate XPU stream for communication
  comm_ctx->CreateStream();
J
james 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

  place_to_calc_ctx_[place_key] = calc_ctx;
  place_to_comm_ctx_[place_key] = std::move(comm_ctx);
}

void ProcessGroupBKCL::SyncCalcStream(const Place& place) {
  const std::string& key = GetKeyFromPlace(place);
  const auto* calc_ctx = place_to_calc_ctx_[key];
  const auto* comm_ctx = place_to_comm_ctx_[key].get();
  calc_event_->Record(*calc_ctx);
  calc_event_->Block(*comm_ctx);
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Collective(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    Fn fn,
    CommType op_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& place = in_tensor.place();
  const auto& key = GetKeyFromPlace(place);

J
james 已提交
241 242
  if (!calc_event_ ||
      (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end())) {
J
james 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    CreateBKCLEnvCache(place, key);
  }

  if (!use_calc_stream) {
    SyncCalcStream(place);
  }

  auto task = CreateTask(place, rank_, op_type, sync_op, use_calc_stream);

  const auto* calc_ctx = place_to_calc_ctx_[key];
  const auto& comm_ctx = place_to_comm_ctx_[key];
  auto bkcl_stream = use_calc_stream ? calc_ctx->stream() : comm_ctx->stream();
  fn(out_tensor, in_tensor, comm_ctx->bkcl_context(), bkcl_stream);

  if (!use_calc_stream) {
J
james 已提交
258 259
    PADDLE_ENFORCE_NOT_NULL(
        comm_ctx.get(), platform::errors::Fatal("comm context is nullptr."));
J
james 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    task->comm_event_->Record(*comm_ctx.get());
  }

  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllReduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const AllreduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
279 280 281 282 283 284 285 286 287 288 289
        VLOG(3) << "bkcl_all_reduce";
        int r =
            bkcl_all_reduce(comm,
                            input.data(),
                            output->data(),
                            input.numel(),
                            platform::ToBKCLDataType(
                                framework::TransToProtoVarType(input.type())),
                            ToBKCLRedType(opts.reduce_op),
                            stream);
        return r;
J
james 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
      },
      CommType::ALLREDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Broadcast(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const BroadcastOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        int root = opts.source_rank + opts.source_root;
310 311 312 313 314 315 316 317 318 319 320
        VLOG(3) << "bkcl_broadcast";
        int r =
            bkcl_broadcast(comm,
                           input.data(),
                           output->data(),
                           input.numel(),
                           platform::ToBKCLDataType(
                               framework::TransToProtoVarType(input.type())),
                           root,
                           stream);
        return r;
J
james 已提交
321 322 323 324 325 326 327 328 329
      },
      CommType::BROADCAST,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllGather(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
330 331
    int64_t offset,
    int64_t numel,
J
james 已提交
332 333
    bool sync_op,
    bool use_calc_stream) {
334 335 336 337 338 339 340 341
  const phi::DenseTensor& in_tensor_maybe_partial =
      numel > 0 ? GetPartialTensor(in_tensor, offset, numel) : in_tensor;
  phi::distributed::CommStaticCheck::GatherLikeShape(*out_tensor,
                                                     in_tensor_maybe_partial,
                                                     /*dst_rank*/ rank_,
                                                     /*cur_rank*/ rank_,
                                                     size_,
                                                     phi::AllocationType::XPU);
J
james 已提交
342 343 344 345 346 347 348
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
349 350 351 352 353 354 355 356 357 358
        VLOG(3) << "bkcl_all_gather";
        int r =
            bkcl_all_gather(comm,
                            in_tensor_maybe_partial.data(),
                            in_tensor_maybe_partial.numel(),
                            output->data(),
                            platform::ToBKCLDataType(
                                framework::TransToProtoVarType(input.type())),
                            stream);
        return r;
J
james 已提交
359 360 361 362 363 364
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

J
james 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Reduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const ReduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
378 379 380 381 382 383 384 385 386 387 388
        VLOG(3) << "bkcl_reduce";
        int r = bkcl_reduce(comm,
                            input.data(),
                            output->data(),
                            input.numel(),
                            platform::ToBKCLDataType(
                                framework::TransToProtoVarType(input.type())),
                            ToBKCLRedType(opts.reduce_op),
                            opts.root_rank,
                            stream);
        return r;
J
james 已提交
389
      },
390
      CommType::REDUCE,
J
james 已提交
391 392 393 394
      sync_op,
      use_calc_stream);
}

395 396 397 398 399 400 401 402 403 404 405 406 407
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::ReduceScatter(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const ReduceScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
408 409
        VLOG(3) << "bkcl_reduce_scatter";
        int r = bkcl_reduce_scatter(
410 411 412 413 414 415 416 417
            comm,
            input.data(),
            output->data(),
            output->numel(),
            platform::ToBKCLDataType(
                framework::TransToProtoVarType(input.type())),
            ToBKCLRedType(opts.reduce_op),
            stream);
418
        return r;
419 420 421 422 423 424
      },
      CommType::REDUCE_SCATTER,
      sync_op,
      use_calc_stream);
}

J
james 已提交
425 426
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Barrier(
    const BarrierOptions& opts) {
427 428 429 430 431
  PADDLE_ENFORCE_GE(opts.device_id,
                    0,
                    platform::errors::PreconditionNotMet(
                        "The barrier device id must greater or equal than 0."));
  platform::XPUPlace place(opts.device_id);
J
james 已提交
432
  auto allocator = std::unique_ptr<phi::Allocator>(
433
      new paddle::experimental::DefaultAllocator(place));
J
james 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446
  phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim{1});
  phi::DenseTensor barrier_tensor{allocator.get(), meta};

  auto task = AllReduce(&barrier_tensor,
                        barrier_tensor,
                        {},
                        /*sync_op*/ true,
                        /*use_calc_stream*/ false);
  auto bkcl_task = dynamic_cast<BKCLTask*>(task.get());
  bkcl_task->barrier_ = true;
  return task;
}

447
phi::DeviceContext* ProcessGroupBKCL::GetDeviceContext(
J
james 已提交
448 449 450 451
    const Place& place) const {
  return GetDeviceContext(place, /*use_calc_stream*/ false);
}

452
phi::DeviceContext* ProcessGroupBKCL::GetDeviceContext(
J
james 已提交
453 454 455 456
    const Place& place, bool use_calc_stream) const {
  const std::string& key = GetKeyFromPlace(place);
  if (use_calc_stream) {
    const auto& iter = place_to_calc_ctx_.find(key);
R
Roc 已提交
457
    return iter->second;
J
james 已提交
458 459 460 461 462 463
  } else {
    const auto& iter = place_to_comm_ctx_.find(key);
    PADDLE_ENFORCE_NE(iter,
                      place_to_comm_ctx_.end(),
                      platform::errors::InvalidArgument(
                          "Cannot find device context in process group."));
R
Roc 已提交
464
    return iter->second.get();
J
james 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
  }
}

// below are old apis
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllReduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
J
james 已提交
483 484 485 486
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in XPUPlace."));
J
james 已提交
487 488 489 490 491 492 493
  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
494 495 496 497 498 499 500 501 502 503 504 505
        VLOG(3) << "bkcl_all_reduce";

        int r =
            bkcl_all_reduce(comm,
                            input.data(),
                            output->data(),
                            input.numel(),
                            platform::ToBKCLDataType(
                                framework::TransToProtoVarType(input.type())),
                            ToBKCLRedType(opts.reduce_op),
                            stream);
        return r;
J
james 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
      },
      CommType::ALLREDUCE,
      /*sync_op*/ true,
      /*use_calc_stream*/ false);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllReduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts,
    bool sync_op) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
J
james 已提交
527 528 529 530
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in XPUPlace."));
J
james 已提交
531 532 533 534 535 536 537
  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
538 539 540 541 542 543 544 545 546 547 548
        VLOG(3) << "bkcl_all_reduce";
        int r =
            bkcl_all_reduce(comm,
                            input.data(),
                            output->data(),
                            input.numel(),
                            platform::ToBKCLDataType(
                                framework::TransToProtoVarType(input.type())),
                            ToBKCLRedType(opts.reduce_op),
                            stream);
        return r;
J
james 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
      },
      CommType::ALLREDUCE,
      sync_op,
      /*use_calc_stream*/ false);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Broadcast(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
J
james 已提交
569 570 571 572
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in XPUPlace."));
J
james 已提交
573 574 575 576 577 578 579 580 581 582

  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
583 584 585 586 587 588 589 590 591 592 593
        VLOG(3) << "bkcl_broadcast";
        int r =
            bkcl_broadcast(comm,
                           input.data(),
                           output->data(),
                           input.numel(),
                           platform::ToBKCLDataType(
                               framework::TransToProtoVarType(input.type())),
                           root,
                           stream);
        return r;
J
james 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
      },
      CommType::BROADCAST,
      /*sync_op*/ true,
      /*use_calc_stream*/ false);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Broadcast(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts,
    bool sync_op) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
J
james 已提交
615 616 617 618
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in XPUPlace."));
J
james 已提交
619 620 621 622 623 624 625 626 627 628

  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
629 630 631 632 633 634 635 636 637 638 639
        VLOG(3) << "bkcl_broadcast";
        int r =
            bkcl_broadcast(comm,
                           input.data(),
                           output->data(),
                           input.numel(),
                           platform::ToBKCLDataType(
                               framework::TransToProtoVarType(input.type())),
                           root,
                           stream);
        return r;
J
james 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
      },
      CommType::BROADCAST,
      sync_op,
      /*use_calc_stream*/ false);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllGather(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
J
james 已提交
659 660 661 662
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in XPUPlace."));
J
james 已提交
663 664 665 666 667 668 669 670 671 672 673
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in XPUPlace."));
  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
674 675 676 677 678 679 680 681 682 683
        VLOG(3) << "bkcl_all_gather";
        int r =
            bkcl_all_gather(comm,
                            input.data(),
                            input.numel(),
                            output->data(),
                            platform::ToBKCLDataType(
                                framework::TransToProtoVarType(input.type())),
                            stream);
        return r;
J
james 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
      },
      CommType::ALLGATHER,
      /*sync_op*/ true,
      /*use_calc_stream*/ false);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllGather(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    bool sync_op) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in XPUPlace."));
  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
715 716 717 718 719 720 721 722 723 724
        VLOG(3) << "bkcl_all_gather";
        int r =
            bkcl_all_gather(comm,
                            input.data(),
                            input.numel(),
                            output->data(),
                            platform::ToBKCLDataType(
                                framework::TransToProtoVarType(input.type())),
                            stream);
        return r;
J
james 已提交
725 726 727 728 729 730
      },
      CommType::ALLGATHER,
      sync_op,
      /*use_calc_stream*/ false);
}

L
LiYuRio 已提交
731
std::shared_ptr<ProcessGroupBKCL> ProcessGroupBKCL::CreateProcessGroupBKCL(
732 733 734 735
    const std::shared_ptr<phi::distributed::Store>& store,
    int rank,
    int size,
    int gid) {
L
LiYuRio 已提交
736 737 738 739 740 741
  auto process_group =
      std::make_shared<ProcessGroupBKCL>(store, rank, size, gid);
  ProcessGroupIdMap::GetInstance().emplace(gid, process_group);
  return process_group;
}

J
james 已提交
742 743
}  //  namespace distributed
}  //  namespace paddle