ir.cc 15.8 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/pybind/ir.h"
16

17
#include <Python.h>
W
WangZhen 已提交
18
#include <algorithm>
19
#include <memory>
F
flame 已提交
20 21
#include <string>
#include <unordered_map>
W
WangZhen 已提交
22
#include <unordered_set>
23
#include <utility>
24

25 26
#include "paddle/fluid/pybind/pybind_variant_caster.h"

27
#include "paddle/fluid/ir/dialect/pd_dialect.h"
28
#include "paddle/fluid/ir/dialect/pd_type.h"
29
#include "paddle/fluid/ir/dialect/utils.h"
30
#include "paddle/fluid/ir/interface/op_yaml_info.h"
31
#include "paddle/fluid/ir_adaptor/translator/translate.h"
32
#include "paddle/ir/core/block.h"
33
#include "paddle/ir/core/builtin_attribute.h"
34
#include "paddle/ir/core/program.h"
35 36 37
#include "paddle/ir/core/type.h"
#include "paddle/ir/core/value.h"
#include "paddle/phi/core/enforce.h"
F
flame 已提交
38 39 40
#include "pybind11/stl.h"

namespace py = pybind11;
41 42
using ir::Block;
using ir::Operation;
43 44
using ir::OpOperand;
using ir::OpResult;
45
using ir::Program;
46 47
using ir::Type;
using ir::Value;
48
using paddle::dialect::APIBuilder;
49
using paddle::dialect::DenseTensorType;
F
flame 已提交
50 51 52 53 54
using pybind11::return_value_policy;

namespace paddle {
namespace pybind {

55 56 57 58
PyTypeObject *g_ir_opresult_pytype = nullptr;

void BindOpsAPI(pybind11::module *module);

59
void BindProgram(py::module *m) {
Y
YuanRisheng 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  py::class_<Program> program(*m, "Program", R"DOC(
    Create Python Program. Program is an abstraction of model structure, divided into
    computational graphs and weights. The Program has a main block that stores the computational
    graphs.

    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

    **Notes**:
        **we have** :ref:`api_paddle_static_default_startup_program` **and** :ref:`api_paddle_static_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_static_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_static_default_main_program` **run in every mini batch and adjust the weights.**

    Returns:
        Program: An empty Program.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
  )DOC");
100 101 102 103 104 105 106 107 108 109 110
  program
      .def(
          "__init__",
          [](Program &self) { new (&self) Program(ir::IrContext::Instance()); })
      .def("__str__",
           [](Program &self) {
             std::ostringstream print_stream;
             self.Print(print_stream);
             return print_stream.str();
           })
      .def("parameters_num", &Program::parameters_num)
111 112 113 114 115
      .def("block",
           py::overload_cast<>(&Program::block),
           return_value_policy::reference)
      .def("block",
           py::overload_cast<>(&Program::block, py::const_),
116
           return_value_policy::reference);
F
flame 已提交
117
}
118

119
void BindBlock(py::module *m) {
Y
YuanRisheng 已提交
120 121 122 123 124 125 126
  py::class_<Block> block(*m, "Block", R"DOC(
    In IR, a Block has a list of Operation and can represent a sub computational graph.

    Notes:
        The constructor of Block should not be invoked directly. You can
        use `Program.block()` to get a block.
  )DOC");
127
  block.def("front", &Block::front, return_value_policy::reference)
128 129
      .def("get_parent_program",
           [](Block &self) { return self.GetParentOp()->GetParentProgram(); })
130 131 132 133 134 135 136 137 138
      .def_property_readonly(
          "ops",
          [](Block &self) -> py::list {
            py::list op_list;
            for (auto iter = self.begin(); iter != self.end(); iter++) {
              op_list.append(*iter);
            }
            return op_list;
          })
Y
YuanRisheng 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
      .def(
          "remove_op",
          [](Block &self, Operation *op) {
            auto op_iter = std::find(self.begin(), self.end(), op);
            self.erase(op_iter);
          },
          R"DOC(
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None

      )DOC");
155 156
}

157
void BindOperation(py::module *m) {
Y
YuanRisheng 已提交
158 159 160 161 162 163 164 165 166 167
  py::class_<Operation> op(*m, "Operation", R"DOC(
    In IR, all the operation are represented by Operation, and Operation
    is regarded as a build in an instruction of a Block. Users can call
    python api to describe their neural network.

    Notes:
        The constructor of operator should not be invoked directly. Use
        python api, for example: paddle.mean for building mean operation.

  )DOC");
168
  op.def("name", &Operation::name)
169
      .def("get_parent_block",
170 171
           py::overload_cast<>(&Operation::GetParent),
           return_value_policy::reference)
172
      .def("get_parent_block",
173 174
           py::overload_cast<>(&Operation::GetParent, py::const_),
           return_value_policy::reference)
175
      .def("num_operands", &Operation::num_operands)
176
      .def("num_results", &Operation::num_results)
177
      .def("operand", &Operation::operand)
178
      .def("result", &Operation::result)
179
      .def("operand_source", &Operation::operand_source)
180 181
      .def("operands", &Operation::operands)
      .def("results", &Operation::results)
182 183 184 185 186 187 188 189 190
      .def("attrs",
           [](Operation &self) -> py::dict {
             py::dict attrs_dict;
             for (auto &pair : self.attributes()) {
               attrs_dict[pair.first.c_str()] =
                   paddle::dialect::GetAttributeData(pair.second);
             }
             return attrs_dict;
           })
191 192 193 194 195 196 197 198
      .def("operands_source",
           [](Operation &self) -> py::list {
             py::list op_list;
             for (uint32_t i = 0; i < self.num_operands(); i++) {
               op_list.append(self.operand_source(i));
             }
             return op_list;
           })
199 200 201 202 203 204
      .def("get_input_names",
           [](Operation &self) -> py::list {
             py::list op_list;
             paddle::dialect::OpYamlInfoInterface yaml_interface =
                 self.dyn_cast<paddle::dialect::OpYamlInfoInterface>();
             auto inputs_info = std::get<0>(yaml_interface.GetOpInfo());
205
             for (auto &input_info : inputs_info) {
206 207 208 209 210 211 212 213 214 215
               op_list.append(input_info.name);
             }
             return op_list;
           })
      .def("get_attr_names",
           [](Operation &self) -> py::list {
             py::list op_list;
             paddle::dialect::OpYamlInfoInterface yaml_interface =
                 self.dyn_cast<paddle::dialect::OpYamlInfoInterface>();
             auto attrs_info = std::get<1>(yaml_interface.GetOpInfo());
216
             for (auto &attr_info : attrs_info) {
217 218 219 220 221 222 223 224 225 226
               op_list.append(attr_info.name);
             }
             return op_list;
           })
      .def("get_output_names",
           [](Operation &self) -> py::list {
             py::list op_list;
             paddle::dialect::OpYamlInfoInterface yaml_interface =
                 self.dyn_cast<paddle::dialect::OpYamlInfoInterface>();
             auto outputs_info = std::get<2>(yaml_interface.GetOpInfo());
227
             for (auto &output_info : outputs_info) {
228 229 230 231 232 233 234 235 236 237 238
               op_list.append(output_info.name);
             }
             return op_list;
           })
      .def("replace_all_uses_with",
           [](Operation &self, const std::vector<OpResult> &op_results) {
             self.ReplaceAllUsesWith(op_results);
           });
}

void BindValue(py::module *m) {
Y
YuanRisheng 已提交
239 240 241 242 243 244 245 246 247
  py::class_<Value> value(*m, "Value", R"DOC(
    Value class represents the SSA value in the IR system. It is a directed edge
    and a base class.

    Notes:
        The constructor of Value should not be invoked directly. Value can be automatically constructed
        when build network.

  )DOC");
248 249 250 251
  value
      .def("get_defining_op",
           &Value::GetDefiningOp,
           return_value_policy::reference)
X
xiaoguoguo626807 已提交
252 253 254 255 256 257 258
      .def("__eq__", &Value::operator==)
      .def("__eq__",
           [](Value &self, OpResult &other) {
             return self.impl() == other.value_impl();
           })
      .def("__hash__",
           [](const Value &self) { return std::hash<ir::Value>{}(self); });
259 260 261
}

void BindOpOperand(py::module *m) {
Y
YuanRisheng 已提交
262 263 264 265 266 267 268 269 270 271
  py::class_<OpOperand> op_operand(*m,
                                   "OpOperand",
                                   R"DOC(
    OpOperand class represents the op_operand (input) of operation.

    Notes:
        The constructor of OpOperand should not be invoked directly. OpOperand can be automatically constructed
        when build network.

  )DOC");
272 273 274 275 276 277
  op_operand
      .def("source",
           [](OpOperand &self) { return self.source().dyn_cast<OpResult>(); })
      .def("set_source", [](OpOperand &self, const OpResult &result) {
        self.set_source(result);
      });
278 279
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
bool GetStopGradient(const OpResult &self) {
  auto *defining_op = self.owner();
  if (defining_op->HasAttribute(kAttrStopGradients)) {
    auto stop_gradients = defining_op->attribute(kAttrStopGradients)
                              .dyn_cast<ir::ArrayAttribute>()
                              .AsVector();
    return stop_gradients[self.GetResultIndex()]
        .dyn_cast<ir::BoolAttribute>()
        .data();
  } else {
    return false;
  }
}

void SetStopGradient(const OpResult &self, bool stop_gradient) {
  auto *defining_op = self.owner();
  std::vector<ir::Attribute> stop_gradients;
  if (defining_op->HasAttribute(kAttrStopGradients)) {
    stop_gradients = defining_op->attribute(kAttrStopGradients)
                         .dyn_cast<ir::ArrayAttribute>()
                         .AsVector();
  } else {
    stop_gradients = std::vector<ir::Attribute>(
        defining_op->num_results(),
        ir::BoolAttribute::get(ir::IrContext::Instance(), false));
  }
  stop_gradients[self.GetResultIndex()] =
      ir::BoolAttribute::get(ir::IrContext::Instance(), stop_gradient);
  defining_op->set_attribute(
      kAttrStopGradients,
      ir::ArrayAttribute::get(ir::IrContext::Instance(), stop_gradients));
}

313
void BindOpResult(py::module *m) {
Y
YuanRisheng 已提交
314 315 316 317 318 319 320
  py::class_<OpResult> op_result(*m, "OpResult", R"DOC(
    OpResult class represents the value(output) defined by a result of operation.

    Notes:
        The constructor of OpResult should not be invoked directly. OpResult can be automatically constructed
        when build network.
  )DOC");
321
  g_ir_opresult_pytype = reinterpret_cast<PyTypeObject *>(op_result.ptr());
322 323 324 325 326 327 328 329 330
  op_result.def("__eq__", &OpResult::operator==)
      .def("__eq__",
           [](OpResult &self, Value &other) {
             return self.value_impl() == other.impl();
           })
      .def("__hash__",
           [](OpResult &self) {
             return std::hash<ir::Value>{}(self.dyn_cast<ir::Value>());
           })
331 332 333 334 335
      .def("get_defining_op",
           &OpResult::GetDefiningOp,
           return_value_policy::reference)
      .def("use_empty", &OpResult::use_empty)
      .def("type", &OpResult::type)
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
      .def_property(
          "stop_gradient",
          [](OpResult &self) { return GetStopGradient(self); },
          [](OpResult &self, bool stop_gradient) {
            SetStopGradient(self, stop_gradient);
          })
      .def_property(
          "shape",
          [](OpResult &self) {
            if (self.type().isa<DenseTensorType>()) {
              return phi::vectorize(
                  self.type().dyn_cast<DenseTensorType>().dims());
            } else {
              PADDLE_THROW(phi::errors::InvalidArgument(
                  "Currently, we can only get shape for dense tensor."));
            }
          },
          [](OpResult &self, const std::vector<int> &shape) {
            PADDLE_THROW(phi::errors::InvalidArgument(
                "can't set shape when building static graph"));
          })
      .def_property(
          "dtype",
          [](OpResult &self) {
            if (self.type().isa<DenseTensorType>()) {
              return paddle::dialect::TransToPhiDataType(
                  self.type().dyn_cast<DenseTensorType>().dtype());
            } else {
              PADDLE_THROW(phi::errors::InvalidArgument(
                  "Currently, we can only get dtype for dense tensor."));
            }
          },
          [](OpResult &self, phi::DataType dtype) {
            PADDLE_THROW(phi::errors::InvalidArgument(
                "can't set dtype when building static graph"));
          });
372 373 374 375 376
}

void BindType(py::module *m) {
  py::class_<Type> ir_type(*m, "Type");
  ir_type.def("__eq__", [](Type &self, Type &other) { return self == other; })
377 378 379 380 381
      .def("__str__", [](Type &self) {
        std::ostringstream print_stream;
        print_stream << self;
        return print_stream.str();
      });
382 383 384
}

void BindUtils(pybind11::module *m) {
385 386 387 388 389 390 391 392
  m->def("set_global_program",
         [](Program *program) { APIBuilder::Instance().SetProgram(program); });
  m->def("set_insertion_point",
         [](Operation *op) { APIBuilder::Instance().SetInsertionPoint(op); });
  m->def("reset_insertion_point_to_start",
         []() { APIBuilder::Instance().ResetInsertionPointToStart(); });
  m->def("reset_insertion_point_to_end",
         []() { APIBuilder::Instance().ResetInsertionPointToEnd(); });
Y
YuanRisheng 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
  m->def("translate_to_new_ir", &paddle::TranslateLegacyProgramToProgram, R"DOC(
        Convert Fluid Program to New IR Program.

        Args:

            legacy_program (ProgramDesc): The Fluid Program that will be converted.

        Returns:
            Program: The New IR Program

        Raises:
            PreconditionNotMet: If legacy_program has multi block will raise error.

        Examples:
            .. code-block:: python

                import paddle
                from paddle import ir
                paddle.enable_static()

                x = paddle.randn([4, 4])
                main_program, start_program = (
                    paddle.static.Program(),
                    paddle.static.Program(),
                )
                with paddle.static.program_guard(main_program, start_program):
                    x_s = paddle.static.data('x', [4, 4], x.dtype)
                    x_s.stop_gradient = False
                    y_s = paddle.matmul(x_s, x_s)
                    z_s = paddle.add(y_s, y_s)
                    k_s = paddle.tanh(z_s)
                newir_program = ir.translate_to_new_ir(main_program.desc)

                print(newir_program)

      )DOC");
429 430
}

431 432 433 434 435 436 437 438 439 440 441 442
void BindNewIR(pybind11::module *module) {
  auto ir_module = module->def_submodule("ir");
  BindProgram(&ir_module);
  BindBlock(&ir_module);
  BindOperation(&ir_module);
  BindValue(&ir_module);
  BindOpOperand(&ir_module);
  BindOpResult(&ir_module);
  BindType(&ir_module);
  BindUtils(&ir_module);
  auto ops_modules = ir_module.def_submodule("ops");
  BindOpsAPI(&ops_modules);
443 444
}

F
flame 已提交
445 446
}  // namespace pybind
}  // namespace paddle