test_imperative.py 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
J
JiabinYang 已提交
21
from paddle.fluid.imperative.nn import FC
M
minqiyang 已提交
22
from test_imperative_base import new_program_scope
23 24


X
Xin Pan 已提交
25
class MyLayer(fluid.imperative.Layer):
X
Xin Pan 已提交
26 27
    def __init__(self, name_scope):
        super(MyLayer, self).__init__(name_scope)
28 29

    def forward(self, inputs):
M
minqiyang 已提交
30
        x = fluid.layers.relu(inputs)
31
        self._x_for_debug = x
X
Xin Pan 已提交
32 33 34
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
35 36


X
Xin Pan 已提交
37 38 39 40 41 42
class MyPyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
X
Xin Pan 已提交
43
        return np.tanh(inputs[0])
X
Xin Pan 已提交
44 45

    @staticmethod
X
Xin Pan 已提交
46 47
    def backward(inputs):
        inp, out, dout = inputs
X
Xin Pan 已提交
48
        return np.array(dout) * (1 - np.square(np.array(out)))
X
Xin Pan 已提交
49 50


X
Xin Pan 已提交
51
class MLP(fluid.imperative.Layer):
X
Xin Pan 已提交
52 53 54 55
    def __init__(self, name_scope):
        super(MLP, self).__init__(name_scope)
        self._fc1 = FC(self.full_name(),
                       3,
X
Xin Pan 已提交
56 57
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
58 59
        self._fc2 = FC(self.full_name(),
                       4,
X
Xin Pan 已提交
60 61 62 63
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
M
minqiyang 已提交
64
        x = self._fc1(inputs)
X
Xin Pan 已提交
65 66 67 68 69
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


70
class SimpleRNNCell(fluid.imperative.Layer):
X
Xin Pan 已提交
71 72 73
    def __init__(self, name_scope, step_input_size, hidden_size, output_size,
                 param_attr):
        super(SimpleRNNCell, self).__init__(name_scope)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self._dype = core.VarDesc.VarType.FP32
        from paddle.fluid.layer_helper import LayerHelper
        self._helper = LayerHelper(
            'SimpleRNNCell', act="tanh", param_attr=param_attr)

    def _build_once(self, inputs, pre_hidden):
        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
        self._i2h_w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
        self._h2h_w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
        self._h2o_w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):

        tmp_i2h = self._helper.create_variable_for_type_inference(self._dtype)
        tmp_h2h = self._helper.create_variable_for_type_inference(self._dtype)
        hidden = self._helper.create_variable_for_type_inference(self._dype)
        out = self._helper.create_variable_for_type_inference(self._dype)
        softmax_out = self._helper.create_variable_for_type_inference(
            self._dtype)
        reduce_out = self._helper.create_variable_for_type_inference(
            self._dtype)
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
        hidden = self._helper.append_activation(hidden)

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
            attrs={'dim': None,
                   'keep_dim': False,
                   'reduce_all': True})

        return reduce_out, hidden


J
JiabinYang 已提交
162
class SimpleRNN(fluid.imperative.Layer):
X
Xin Pan 已提交
163 164
    def __init__(self, name_scope):
        super(SimpleRNN, self).__init__(name_scope)
J
JiabinYang 已提交
165 166
        self.seq_len = 4
        self._cell = SimpleRNNCell(
X
Xin Pan 已提交
167
            self.full_name(),
J
JiabinYang 已提交
168 169 170 171
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
172 173

    def forward(self, inputs):
J
JiabinYang 已提交
174
        outs = list()
J
JiabinYang 已提交
175 176 177 178 179 180 181 182 183
        pre_hiddens = list()

        init_hidden = fluid.layers.tensor.create_parameter(
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
184
        for i in range(self.seq_len):
J
JiabinYang 已提交
185 186 187
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
188 189
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
190

J
JiabinYang 已提交
191
        return outs, pre_hiddens
J
JiabinYang 已提交
192 193


194
class TestImperative(unittest.TestCase):
X
Xin Pan 已提交
195
    def test_sum_op(self):
X
polish  
Xin Pan 已提交
196
        x = np.ones([2, 2], np.float32)
X
Xin Pan 已提交
197 198 199
        with fluid.imperative.guard():
            inputs = []
            for _ in range(10):
X
polish  
Xin Pan 已提交
200
                inputs.append(fluid.imperative.base.to_variable(x))
X
Xin Pan 已提交
201 202 203
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
            loss._backward()
X
polish  
Xin Pan 已提交
204 205
            self.assertTrue(np.allclose(ret._numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0]._gradient(), x))
X
Xin Pan 已提交
206

207 208 209 210
    def test_layer(self):
        with fluid.imperative.guard():
            cl = core.Layer()
            cl.forward([])
X
Xin Pan 已提交
211
            l = fluid.imperative.Layer("l")
M
minqiyang 已提交
212
            self.assertRaises(NotImplementedError, l.forward, [])
X
polish  
Xin Pan 已提交
213 214 215 216 217 218 219 220 221 222

    def test_pylayer_func_id(self):

        with fluid.imperative.guard():

            class PyLayer1(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer1, self).__init__()

                @staticmethod
M
minqiyang 已提交
223 224
                def forward(input):
                    return input
X
polish  
Xin Pan 已提交
225 226

                @staticmethod
M
minqiyang 已提交
227 228
                def backward(input):
                    return input
X
polish  
Xin Pan 已提交
229 230 231 232 233 234

            class PyLayer2(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer2, self).__init__()

                @staticmethod
M
minqiyang 已提交
235 236
                def forward(input):
                    return input
X
polish  
Xin Pan 已提交
237 238

                @staticmethod
M
minqiyang 已提交
239 240
                def backward(input):
                    return input
X
polish  
Xin Pan 已提交
241 242 243

            py_layer_1 = PyLayer1()
            py_layer_2 = PyLayer2()
M
minqiyang 已提交
244 245
            py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
            py_layer_2(fluid.imperative.base.to_variable(np.ones([2, 2])))
X
polish  
Xin Pan 已提交
246 247 248 249 250
            id = py_layer_1.forward_id
            self.assertGreater(id, 0)
            self.assertEqual(py_layer_1.backward_id, id + 1)
            self.assertEqual(py_layer_2.forward_id, id + 2)
            self.assertEqual(py_layer_2.backward_id, id + 3)
M
minqiyang 已提交
251
            py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
X
polish  
Xin Pan 已提交
252
            self.assertEqual(py_layer_1.forward_id, id)
253

X
Xin Pan 已提交
254
    def test_pylayer(self):
X
Xin Pan 已提交
255
        np_inp = np.ones([2, 2], np.float32)
X
Xin Pan 已提交
256 257
        with fluid.imperative.guard():
            my_py_layer = MyPyLayer()
X
Xin Pan 已提交
258
            var_inp = fluid.imperative.base.to_variable(np_inp)
M
minqiyang 已提交
259
            outs = my_py_layer(var_inp)
X
Xin Pan 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272
            dy_out = np.sum(outs[0]._numpy())
            outs[0]._backward()
            dy_grad = var_inp._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            # TODO(panyx0718): Paddle doesn't diff against data `inp`.
            x1 = inp * 1
            # TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
            x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[x1.name])[0]
M
minqiyang 已提交
273 274
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
X
Xin Pan 已提交
275 276 277 278 279 280 281

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
X
Xin Pan 已提交
282

283
    def test_layer_in_out(self):
X
Xin Pan 已提交
284
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
285
        with fluid.imperative.guard():
M
minqiyang 已提交
286
            var_inp = fluid.imperative.base.to_variable(np_inp)
X
Xin Pan 已提交
287
            l = MyLayer("my_layer")
M
minqiyang 已提交
288
            x = l(var_inp)[0]
289
            self.assertIsNotNone(x)
X
Xin Pan 已提交
290
            dy_out = x._numpy()
291
            x._backward()
X
Xin Pan 已提交
292 293 294 295 296
            dy_grad = l._x_for_debug._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
X
Xin Pan 已提交
297
            l = MyLayer("my_layer")
X
Xin Pan 已提交
298 299 300
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
M
minqiyang 已提交
301 302
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
X
Xin Pan 已提交
303 304 305 306 307 308 309 310 311 312 313

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        with fluid.imperative.guard():
M
minqiyang 已提交
314
            var_inp = fluid.imperative.base.to_variable(np_inp)
X
Xin Pan 已提交
315
            mlp = MLP("mlp")
M
minqiyang 已提交
316
            out = mlp(var_inp)
X
Xin Pan 已提交
317 318 319 320 321 322 323
            dy_out = out._numpy()
            out._backward()
            dy_grad = mlp._fc1._w._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
X
Xin Pan 已提交
324
            mlp = MLP("mlp")
X
Xin Pan 已提交
325 326 327
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._fc1._w.name])[0]
M
minqiyang 已提交
328 329
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
X
Xin Pan 已提交
330 331 332 333 334 335 336 337
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
338

X
Xin Pan 已提交
339
        params = mlp.parameters(True)
X
Xin Pan 已提交
340 341 342 343
        self.assertEqual("mlp/MLP_0/FC_0_0.w_0", params[0].name)
        self.assertEqual("mlp/MLP_0/FC_0_0.b_0", params[1].name)
        self.assertEqual("mlp/MLP_0/FC_1_0.w_0", params[2].name)
        self.assertEqual("mlp/MLP_0/FC_1_0.b_0", params[3].name)
X
Xin Pan 已提交
344 345 346 347 348 349 350
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
        self.assertEqual(mlp._fc1, sublayers[0])
        self.assertEqual(mlp._fc2, sublayers[1])
        self.assertEqual(len(sublayers), 2)

J
JiabinYang 已提交
351 352 353 354 355
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
J
JiabinYang 已提交
356 357 358
        with fluid.imperative.guard():
            var_inp = fluid.imperative.base.to_variable(np_inp)
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
X
Xin Pan 已提交
359
            simple_rnn = SimpleRNN("simple_rnn")
J
JiabinYang 已提交
360 361 362 363 364 365
            outs, pre_hiddens = simple_rnn.forward(var_inp)
            dy_out = outs[3]._numpy()
            outs[3]._backward()
            dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()
J
JiabinYang 已提交
366 367 368 369

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
X
Xin Pan 已提交
370
            simple_rnn = SimpleRNN("simple_rnn")
J
JiabinYang 已提交
371
            outs, pre_hiddens = simple_rnn(inp)
J
JiabinYang 已提交
372
            param_grads = fluid.backward.append_backward(outs[3])
J
JiabinYang 已提交
373 374
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
J
JiabinYang 已提交
375
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
J
JiabinYang 已提交
376
                feed={inp.name: np_inp},
J
JiabinYang 已提交
377 378 379 380
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
J
JiabinYang 已提交
381 382 383 384
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
J
JiabinYang 已提交
385

386 387 388

if __name__ == '__main__':
    unittest.main()