common_sparse_table.cc 20.4 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/table/common_sparse_table.h"
#include <sstream>
17

T
tangwei12 已提交
18
#include "boost/lexical_cast.hpp"
19 20 21 22 23 24 25 26
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace distributed {
class ValueBlock;
}  // namespace distributed
}  // namespace paddle
T
tangwei12 已提交
27

T
tangwei12 已提交
28 29
#define PSERVER_SAVE_SUFFIX ".shard"
using boost::lexical_cast;
30

T
tangwei12 已提交
31 32 33
namespace paddle {
namespace distributed {

34 35
enum SaveMode { all, base, delta };

T
tangwei12 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
struct Meta {
  std::string param;
  int shard_id;
  std::vector<std::string> names;
  std::vector<int> dims;
  uint64_t count;
  std::unordered_map<std::string, int> dims_map;

  explicit Meta(const std::string& metapath) {
    std::ifstream file(metapath);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      if (StartWith(line, "#")) {
        continue;
      }
      auto pairs = paddle::string::split_string<std::string>(line, "=");
      PADDLE_ENFORCE_EQ(
          pairs.size(), 2,
          paddle::platform::errors::InvalidArgument(
              "info in %s except k=v, but got %s", metapath, line));

      if (pairs[0] == "param") {
        param = pairs[1];
      }
      if (pairs[0] == "shard_id") {
        shard_id = std::stoi(pairs[1]);
      }
      if (pairs[0] == "row_names") {
        names = paddle::string::split_string<std::string>(pairs[1], ",");
      }
      if (pairs[0] == "row_dims") {
        auto dims_strs =
            paddle::string::split_string<std::string>(pairs[1], ",");
        for (auto& str : dims_strs) {
          dims.push_back(std::stoi(str));
        }
      }
      if (pairs[0] == "count") {
        count = std::stoull(pairs[1]);
      }
    }
    for (int x = 0; x < names.size(); ++x) {
      dims_map[names[x]] = dims[x];
    }
  }

  Meta(std::string param, int shard_id, std::vector<std::string> row_names,
       std::vector<int> dims, uint64_t count) {
    this->param = param;
    this->shard_id = shard_id;
    this->names = row_names;
    this->dims = dims;
    this->count = count;
  }

  std::string ToString() {
    std::stringstream ss;
    ss << "param=" << param << "\n";
    ss << "shard_id=" << shard_id << "\n";
    ss << "row_names=" << paddle::string::join_strings(names, ',') << "\n";
    ss << "row_dims=" << paddle::string::join_strings(dims, ',') << "\n";
    ss << "count=" << count << "\n";
    return ss.str();
  }
};

void ProcessALine(const std::vector<std::string>& columns, const Meta& meta,
T
tangwei12 已提交
104
                  const int64_t id, std::vector<std::vector<float>>* values) {
105 106 107
  auto colunmn_size = columns.size();
  auto load_values =
      paddle::string::split_string<std::string>(columns[colunmn_size - 1], ",");
108
  values->reserve(meta.names.size());
T
tangwei12 已提交
109

110 111
  int offset = 0;
  for (int x = 0; x < meta.names.size(); ++x) {
T
tangwei12 已提交
112
    std::vector<float> val;
113 114 115
    auto start = load_values.begin() + offset;
    auto end = load_values.begin() + offset + meta.dims[x];
    PADDLE_ENFORCE_LE(offset + meta.dims[x], load_values.size(),
T
tangwei12 已提交
116
                      paddle::platform::errors::InvalidArgument(
117 118 119
                          "The data format in txt does not meet the field "
                          "requirements defined in meta"));

T
tangwei12 已提交
120 121 122 123 124 125 126 127 128 129 130 131
    std::transform(start, end, std::back_inserter(val), [id](std::string va) {
      float v = 0.0;

      try {
        v = lexical_cast<float>(va);
      } catch (boost::bad_lexical_cast& e) {
        VLOG(0) << "id: " << id << " get unexpected value: " << va
                << " and be reset to: 0.0";
      }
      return v;
    });

T
tangwei12 已提交
132
    values->push_back(val);
133
    offset += meta.dims[x];
T
tangwei12 已提交
134 135 136
  }
}

137 138 139 140 141 142 143 144 145 146 147 148 149
void SaveMetaToText(std::ostream* os, const CommonAccessorParameter& common,
                    const size_t shard_idx, const int64_t total) {
  // save meta
  std::stringstream stream;
  stream << "param=" << common.table_name() << "\n";
  stream << "shard_id=" << shard_idx << "\n";
  stream << "row_names=" << paddle::string::join_strings(common.params(), ',')
         << "\n";
  stream << "row_dims=" << paddle::string::join_strings(common.dims(), ',')
         << "\n";
  stream << "count=" << total << "\n";
  os->write(stream.str().c_str(), sizeof(char) * stream.str().size());
}
T
tangwei12 已提交
150

151 152 153
int64_t SaveValueToText(std::ostream* os, std::shared_ptr<ValueBlock> block,
                        std::shared_ptr<::ThreadPool> pool, const int mode) {
  int64_t save_num = 0;
T
Thunderbrook 已提交
154 155 156 157 158 159
  for (auto& table : block->values_) {
    for (auto& value : table) {
      if (mode == SaveMode::delta && !value.second->need_save_) {
        continue;
      }

T
tangwei12 已提交
160 161
      ++save_num;

T
Thunderbrook 已提交
162
      std::stringstream ss;
T
tangwei12 已提交
163 164
      auto* vs = value.second->data_.data();

T
Thunderbrook 已提交
165
      auto id = value.first;
T
tangwei12 已提交
166

T
Thunderbrook 已提交
167 168 169 170
      ss << id << "\t" << value.second->count_ << "\t"
         << value.second->unseen_days_ << "\t" << value.second->is_entry_
         << "\t";

T
tangwei12 已提交
171 172
      for (int i = 0; i < block->value_length_ - 1; i++) {
        ss << std::to_string(vs[i]) << ",";
T
Thunderbrook 已提交
173
      }
174

T
tangwei12 已提交
175
      ss << std::to_string(vs[block->value_length_ - 1]);
T
Thunderbrook 已提交
176
      ss << "\n";
177

T
Thunderbrook 已提交
178
      os->write(ss.str().c_str(), sizeof(char) * ss.str().size());
179

T
Thunderbrook 已提交
180 181 182
      if (mode == SaveMode::base || mode == SaveMode::delta) {
        value.second->need_save_ = false;
      }
183
    }
T
tangwei12 已提交
184 185
  }

T
Thunderbrook 已提交
186
  return save_num;
T
tangwei12 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200
}

int64_t LoadFromText(const std::string& valuepath, const std::string& metapath,
                     const int pserver_id, const int pserver_num,
                     const int local_shard_num,
                     std::vector<std::shared_ptr<ValueBlock>>* blocks) {
  Meta meta = Meta(metapath);

  int num_lines = 0;
  std::ifstream file(valuepath);
  std::string line;

  while (std::getline(file, line)) {
    auto values = paddle::string::split_string<std::string>(line, "\t");
T
tangwei12 已提交
201
    auto id = lexical_cast<int64_t>(values[0]);
T
tangwei12 已提交
202 203

    if (id % pserver_num != pserver_id) {
204
      VLOG(3) << "will not load " << values[0] << " from " << valuepath
T
tangwei12 已提交
205 206 207 208 209 210 211 212
              << ", please check id distribution";
      continue;
    }

    auto shard_id = id % local_shard_num;
    auto block = blocks->at(shard_id);

    std::vector<std::vector<float>> kvalues;
T
tangwei12 已提交
213
    ProcessALine(values, meta, id, &kvalues);
214 215 216

    block->Init(id, false);

T
Thunderbrook 已提交
217
    VALUE* value_instant = block->GetValue(id);
T
tangwei12 已提交
218

219
    if (values.size() == 5) {
T
tangwei12 已提交
220 221 222 223
      value_instant->count_ = lexical_cast<int>(values[1]);
      value_instant->unseen_days_ = lexical_cast<int>(values[2]);
      value_instant->is_entry_ =
          static_cast<bool>(lexical_cast<int>(values[3]));
224 225 226 227 228 229 230
    }

    std::vector<float*> block_values = block->Get(id, meta.names, meta.dims);
    auto blas = GetBlas<float>();
    for (int x = 0; x < meta.names.size(); ++x) {
      blas.VCOPY(meta.dims[x], kvalues[x].data(), block_values[x]);
    }
T
tangwei12 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244
  }

  return 0;
}

int32_t CommonSparseTable::initialize() {
  _shards_task_pool.resize(task_pool_size_);
  for (int i = 0; i < _shards_task_pool.size(); ++i) {
    _shards_task_pool[i].reset(new ::ThreadPool(1));
  }

  sync = _config.common().sync();
  VLOG(1) << "table " << _config.common().table_name() << " is sync: " << sync;

245 246
  _global_lr = new float(1.0);

T
tangwei12 已提交
247 248 249
  auto common = _config.common();
  int size = static_cast<int>(common.params().size());

T
tangwei12 已提交
250
  size_t offset = 0;
T
tangwei12 已提交
251 252 253
  for (int x = 0; x < size; ++x) {
    auto& varname = common.params()[x];
    auto& dim = common.dims()[x];
T
tangwei12 已提交
254 255 256 257 258 259 260

    value_idx_[varname] = x;
    value_names_.push_back(varname);
    value_dims_.push_back(dim);
    value_offsets_.push_back(offset);
    initializer_attrs_.push_back(common.initializers()[x]);

T
tangwei12 已提交
261 262
    if (varname == "Param") {
      param_dim_ = dim;
T
tangwei12 已提交
263
      param_offset_ = offset;
T
tangwei12 已提交
264
    }
T
tangwei12 已提交
265 266

    offset += dim;
T
tangwei12 已提交
267 268
  }

T
tangwei12 已提交
269 270 271 272 273 274 275 276 277
  initialize_value();
  initialize_optimizer();
  initialize_recorder();
  return 0;
}

int32_t CommonSparseTable::initialize_recorder() { return 0; }

int32_t CommonSparseTable::initialize_value() {
T
tangwei12 已提交
278
  auto common = _config.common();
T
tangwei12 已提交
279
  shard_values_.reserve(task_pool_size_);
T
tangwei12 已提交
280

T
tangwei12 已提交
281
  for (int x = 0; x < task_pool_size_; ++x) {
T
tangwei12 已提交
282 283 284
    auto shard = std::make_shared<ValueBlock>(
        value_names_, value_dims_, value_offsets_, value_idx_,
        initializer_attrs_, common.entry());
T
tangwei12 已提交
285

T
tangwei12 已提交
286 287
    shard_values_.emplace_back(shard);
  }
T
tangwei12 已提交
288 289 290 291 292 293 294 295 296 297

  auto accessor = _config.accessor();
  std::vector<uint64_t> feasigns;

  for (size_t x = 0; x < accessor.fea_dim(); ++x) {
    if (x % _shard_num == _shard_idx) {
      feasigns.push_back(x);
    }
  }

298
  VLOG(3) << "has " << feasigns.size() << " ids need to be pre inited";
T
tangwei12 已提交
299 300 301 302 303 304 305

  auto buckets = bucket(feasigns.size(), 10);
  for (int x = 0; x < 10; ++x) {
    auto bucket_feasigns = buckets[x + 1] - buckets[x];
    std::vector<uint64_t> ids(bucket_feasigns);
    std::copy(feasigns.begin() + buckets[x], feasigns.begin() + buckets[x + 1],
              ids.begin());
306 307 308 309 310

    std::vector<uint32_t> fres;
    fres.resize(ids.size(), 1);

    auto pull_value = PullSparseValue(ids, fres, param_dim_);
T
tangwei12 已提交
311 312
    std::vector<float> pulls;
    pulls.resize(bucket_feasigns * param_dim_);
313
    pull_sparse(pulls.data(), pull_value);
T
tangwei12 已提交
314 315
  }

T
tangwei12 已提交
316 317 318 319 320 321 322 323
  return 0;
}

int32_t CommonSparseTable::initialize_optimizer() {
  auto common = _config.common();
  auto name = common.name();

  if (name == "sgd") {
T
tangwei12 已提交
324 325
    optimizer_ = std::make_shared<SSGD>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
326
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
327
  } else if (name == "adam") {
T
tangwei12 已提交
328 329
    optimizer_ = std::make_shared<SAdam>(value_names_, value_dims_,
                                         value_offsets_, value_idx_);
330
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
331
  } else if (name == "sum") {
T
tangwei12 已提交
332 333
    optimizer_ = std::make_shared<SSUM>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
T
tangwei12 已提交
334
  } else {
335
    VLOG(3) << "init optimizer failed";
T
tangwei12 已提交
336 337
  }

338
  VLOG(3) << "init optimizer " << name << " done";
T
tangwei12 已提交
339 340 341
  return 0;
}

342 343 344 345 346 347
int32_t CommonSparseTable::set_global_lr(float* lr) {
  _global_lr = lr;
  optimizer_->set_global_lr(_global_lr);
  return 0;
}

T
tangwei12 已提交
348 349
int32_t CommonSparseTable::load(const std::string& path,
                                const std::string& param) {
350
  auto begin = GetCurrentUS();
T
tangwei12 已提交
351 352 353 354
  rwlock_->WRLock();
  LoadFromText(path, param, _shard_idx, _shard_num, task_pool_size_,
               &shard_values_);
  rwlock_->UNLock();
355 356 357 358 359 360 361
  auto end = GetCurrentUS();

  auto varname = _config.common().table_name();
  VLOG(0) << "load " << varname << " with value: " << path
          << " , meta: " << param
          << " using: " << std::to_string((end - begin) / 1e+6) << " seconds";

T
tangwei12 已提交
362 363 364 365 366
  return 0;
}

int32_t CommonSparseTable::save(const std::string& dirname,
                                const std::string& param) {
367
  auto begin = GetCurrentUS();
T
tangwei12 已提交
368 369
  rwlock_->WRLock();
  int mode = std::stoi(param);
370
  VLOG(3) << "sparse table save: " << dirname << " mode: " << mode;
T
tangwei12 已提交
371 372

  auto varname = _config.common().table_name();
373 374
  std::string var_store =
      string::Sprintf("%s/%s%s", dirname, varname, PSERVER_SAVE_SUFFIX);
T
tangwei12 已提交
375 376 377 378 379
  MkDirRecursively(var_store.c_str());

  VLOG(3) << "save " << varname << " in dir: " << var_store << " begin";
  std::vector<std::string> params(_config.common().params().begin(),
                                  _config.common().params().end());
380

T
tangwei12 已提交
381 382 383 384 385
  std::string shard_var_pre =
      string::Sprintf("%s.block%d", varname, _shard_idx);

  std::string value_ = string::Sprintf("%s/%s.txt", var_store, shard_var_pre);

386
  std::unique_ptr<std::ofstream> vs(new std::ofstream(value_));
T
tangwei12 已提交
387 388 389 390

  int64_t total_ins = 0;
  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // save values
391 392 393
    auto shard_save_num = SaveValueToText(vs.get(), shard_values_[shard_id],
                                          _shards_task_pool[shard_id], mode);
    total_ins += shard_save_num;
T
tangwei12 已提交
394
  }
395
  vs->close();
T
tangwei12 已提交
396 397

  std::string meta_ = string::Sprintf("%s/%s.meta", var_store, shard_var_pre);
398 399 400 401 402
  std::unique_ptr<std::ofstream> ms(new std::ofstream(meta_));
  SaveMetaToText(ms.get(), _config.common(), _shard_idx, total_ins);
  ms->close();

  auto end = GetCurrentUS();
T
tangwei12 已提交
403
  rwlock_->UNLock();
404 405 406
  VLOG(0) << "save " << varname << " with path: " << value_
          << " using: " << std::to_string((end - begin) / 1e+6) << " seconds";

T
tangwei12 已提交
407 408 409 410 411 412 413
  return 0;
}

std::pair<int64_t, int64_t> CommonSparseTable::print_table_stat() {
  int64_t feasign_size = 0;
  int64_t mf_size = 0;

T
Thunderbrook 已提交
414 415 416 417
  for (auto& shard : shard_values_) {
    for (auto& table : shard->values_) {
      feasign_size += table.size();
    }
T
tangwei12 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
  }

  return {feasign_size, mf_size};
}

int32_t CommonSparseTable::pour() {
  std::vector<float> values;
  std::vector<uint64_t> keys;

  keys.reserve(pull_reservoir_.size());
  values.reserve(pull_reservoir_.size() * param_dim_);

  for (auto& val : pull_reservoir_) {
    keys.push_back(val.first);
    auto& reservoir = val.second;
    reservoir.avg();
    std::copy(reservoir.values.begin(), reservoir.values.end(),
              std::back_inserter(values));
  }
  _push_sparse(keys.data(), values.data(), pull_reservoir_.size());

  pull_reservoir_.clear();
  return 0;
}

443 444 445 446
int32_t CommonSparseTable::pull_sparse(float* pull_values,
                                       const PullSparseValue& pull_value) {
  auto shard_num = task_pool_size_;
  std::vector<std::future<int>> tasks(shard_num);
T
tangwei12 已提交
447

448
  for (int shard_id = 0; shard_id < shard_num; ++shard_id) {
T
tangwei12 已提交
449
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
450
        [this, shard_id, shard_num, &pull_value, &pull_values]() -> int {
T
tangwei12 已提交
451
          auto& block = shard_values_[shard_id];
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

          std::vector<int> offsets;
          pull_value.Fission(shard_id, shard_num, &offsets);

          if (pull_value.is_training_) {
            for (auto& offset : offsets) {
              auto feasign = pull_value.feasigns_[offset];
              auto frequencie = pull_value.frequencies_[offset];
              auto* value = block->Init(feasign, true, frequencie);
              std::copy_n(value + param_offset_, param_dim_,
                          pull_values + param_dim_ * offset);
            }
          } else {
            for (auto& offset : offsets) {
              auto feasign = pull_value.feasigns_[offset];
              auto* value = block->Init(feasign, false);
              std::copy_n(value + param_offset_, param_dim_,
                          pull_values + param_dim_ * offset);
            }
T
tangwei12 已提交
471
          }
T
tangwei12 已提交
472

T
tangwei12 已提交
473 474 475 476 477 478 479 480 481 482
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

T
Thunderbrook 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
int32_t CommonSparseTable::pull_sparse_ptr(char** pull_values,
                                           const uint64_t* keys, size_t num) {
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &offset_bucket, &pull_values]() -> int {
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
            auto* value = block->InitGet(id);
            // std::copy_n(value + param_offset_, param_dim_,
            //            pull_values + param_dim_ * offset);
T
tangwei12 已提交
507
            pull_values[offset] = reinterpret_cast<char*>(value);
T
Thunderbrook 已提交
508 509 510 511 512 513 514 515 516 517 518 519
          }

          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

T
tangwei12 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
                                        const float* values, size_t num) {
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &values, num, &offset_bucket]() -> int {
          auto& offsets = offset_bucket[shard_id];
          optimizer_->update(keys, values, num, offsets,
                             shard_values_[shard_id].get());
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
                                       const float* values, size_t num) {
  if (sync) {
    std::future<int> task =
        _shards_task_pool[0]->enqueue([this, &keys, &values, num]() -> int {
          for (int x = 0; x < num; ++x) {
            auto id = keys[x];
            auto has = pull_reservoir_.find(id);

            if (has == pull_reservoir_.end()) {
              pull_reservoir_[id] = ReservoirValue<float>(param_dim_);
            }

            auto& reservoir = pull_reservoir_[id];
            reservoir.add(values + x * param_dim_, param_dim_);
          }
          return 0;
        });
    task.wait();
  } else {
    _push_sparse(keys, values, num);
  }

  return 0;
}

T
Thunderbrook 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
                                       const float** values, size_t num) {
  _push_sparse(keys, values, num);
  return 0;
}

int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
                                        const float** values, size_t num) {
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &values, num, &offset_bucket]() -> int {
          auto& offsets = offset_bucket[shard_id];
          for (size_t i = 0; i < offsets.size(); ++i) {
            std::vector<uint64_t> tmp_off = {0};
            optimizer_->update(keys + offsets[i], values[offsets[i]], num,
                               tmp_off, shard_values_[shard_id].get());
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

T
tangwei12 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624
int32_t CommonSparseTable::push_sparse_param(const uint64_t* keys,
                                             const float* values, size_t num) {
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
T
tangwei12 已提交
625
        [this, shard_id, &keys, &offset_bucket, &values]() -> int {
T
tangwei12 已提交
626 627 628 629 630 631
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
632
            auto* value = block->Init(id, false);
T
tangwei12 已提交
633 634
            std::copy_n(values + param_dim_ * offset, param_dim_,
                        value + param_offset_);
635
            block->SetEntry(id, true);
T
tangwei12 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

int32_t CommonSparseTable::flush() { return 0; }

649 650
int32_t CommonSparseTable::shrink(const std::string& param) {
  int threshold = std::stoi(param);
651
  VLOG(3) << "sparse table shrink: " << threshold;
652 653 654

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // shrink
655
    VLOG(4) << shard_id << " " << task_pool_size_ << " begin shrink";
656 657
    shard_values_[shard_id]->Shrink(threshold);
  }
T
tangwei12 已提交
658 659
  return 0;
}
660

T
tangwei12 已提交
661 662 663 664
void CommonSparseTable::clear() { VLOG(0) << "clear coming soon"; }

}  // namespace distributed
}  // namespace paddle