test_isfinite_op.py 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16
19

20
from paddle.fluid import core
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


class TestInf(OpTest):
    def setUp(self):
        self.op_type = "isinf"
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        x[0] = np.inf
        x[-1] = np.inf

        self.inputs = {'X': x}
        self.outputs = {'Out': np.array(True).astype(self.dtype)}

    def init_dtype(self):
        pass

    def test_output(self):
        self.check_output()


43 44 45
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
46 47 48 49 50
class TestFP16Inf(TestInf):
    def init_dtype(self):
        self.dtype = np.float16


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
# BFP16 isinf Test
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
)
class TestInfBF16(OpTest):
    def setUp(self):
        self.op_type = "isinf"
        self.dtype = np.uint16
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        x[0] = np.inf
        x[-1] = np.inf

        out = np.array(True)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.outputs = {'Out': out}

    def test_output(self):
        self.check_output_with_place(core.CUDAPlace(0))


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
class TestNAN(OpTest):
    def setUp(self):
        self.op_type = "isnan"
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        x[0] = np.nan
        x[-1] = np.nan

        self.inputs = {'X': x}
        self.outputs = {'Out': np.array(True).astype(self.dtype)}

    def init_dtype(self):
        pass

    def test_output(self):
        self.check_output()


93 94 95
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
96 97 98 99 100
class TestFP16NAN(TestNAN):
    def init_dtype(self):
        self.dtype = np.float16


101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
# BFP16 isnan Test
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
)
class TestNANBF16(OpTest):
    def setUp(self):
        self.op_type = "isnan"
        self.dtype = np.uint16
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        x[0] = np.nan
        x[-1] = np.nan

        out = np.array(True)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.outputs = {'Out': out}

    def test_output(self):
        self.check_output_with_place(core.CUDAPlace(0))


123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
class TestIsfinite(OpTest):
    def setUp(self):
        self.op_type = "isfinite"
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        x[0] = np.inf
        x[-1] = np.nan
        out = np.isinf(x) | np.isnan(x)

        self.inputs = {'X': x}
        self.outputs = {'Out': np.array(False).astype(self.dtype)}

    def init_dtype(self):
        pass

    def test_output(self):
        self.check_output()


144 145 146
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
147 148 149 150 151
class TestFP16Isfinite(TestIsfinite):
    def init_dtype(self):
        self.dtype = np.float16


152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
# BFP16 isfinite Test
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
)
class TestIsfiniteBF16(OpTest):
    def setUp(self):
        self.op_type = "isfinite"
        self.dtype = np.uint16
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        x[0] = np.inf
        x[-1] = np.nan

        out = np.array(False)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.outputs = {'Out': out}

    def test_output(self):
        self.check_output_with_place(core.CUDAPlace(0))


174 175
if __name__ == '__main__':
    unittest.main()