test_initializer.py 8.6 KB
Newer Older
1
import numpy as np
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
import unittest

import paddle.v2.framework.framework as framework
import paddle.v2.framework.initializer as initializer

DELTA = 0.00001


class TestConstantInitializer(unittest.TestCase):
    def test_constant_initializer_default_value(self):
        """Test the constant initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.ConstantInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 0.0, delta=DELTA)

    def test_constant_initializer(self):
        """Test constant initializer with supplied value
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.ConstantInitializer(2.3))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 2.3, delta=DELTA)


class TestUniformInitializer(unittest.TestCase):
    def test_uniform_initializer_default_value(self):
        """Test the uniform initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.UniformInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -1.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_initializer(self):
        """Test uniform initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.UniformInitializer(-4.2, 3.1, 123))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -4.2, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 3.1, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)


class TestNormalInitializer(unittest.TestCase):
    def test_normal_initializer_default_value(self):
        """Test the normal initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.NormalInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_initializer(self):
        """Test normal initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.NormalInitializer(2.3, 1.9, 123))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)


120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
class TestXavierInitializer(unittest.TestCase):
    def test_uniform_xavier_initializer(self):
        """Test Xavier initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.XavierInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_xavier_initializer_conv(self):
        """Test Xavier initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10, 15, 20],
            lod_level=0,
            name="param",
            initializer=initializer.XavierInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer(self):
        """Test Xavier initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.XavierInitializer(uniform=False))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer_conv(self):
        """Test Xavier initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10, 15, 20],
            lod_level=0,
            name="param",
            initializer=initializer.XavierInitializer(uniform=False))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_xavier_initializer_supplied_arguments(self):
        """Test the Xavier initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.XavierInitializer(
                fan_in=12, fan_out=23, seed=134))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (12 + 23))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 134)


226 227
if __name__ == '__main__':
    unittest.main()