tensor_util.h 18.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
S
Steffy-zxf 已提交
16 17 18 19 20
#include <algorithm>
#include <codecvt>
#include <locale>
#include <string>
#include <unordered_map>
21
#include <vector>
W
wanghuancoder 已提交
22

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_type.h"
6
633WHU 已提交
24
#include "paddle/fluid/framework/dlpack_tensor.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/eigen.h"
S
Steffy-zxf 已提交
26
#include "paddle/fluid/framework/string_array.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/tensor.h"
28 29 30 31
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/device_context.h"
F
fwenguang 已提交
33 34 35
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#endif
D
dzhwinter 已提交
36

37 38
#include "paddle/pten/core/dense_tensor.h"

D
dzhwinter 已提交
39 40 41
namespace paddle {
namespace framework {

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
class PrintOptions {
 public:
  static PrintOptions& Instance() {
    static PrintOptions instance;
    return instance;
  }
  ~PrintOptions() {}
  PrintOptions(const PrintOptions& o) = delete;
  const PrintOptions& operator=(const PrintOptions& o) = delete;

  int precision = 8;
  int threshold = 1000;
  int edgeitems = 3;
  int linewidth = 75;
  bool sci_mode = false;

 private:
  PrintOptions() {}
};

S
Steffy-zxf 已提交
62 63 64 65 66 67 68 69
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape);

C
chengduo 已提交
70 71 72 73 74 75
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
W
wanghuancoder 已提交
76 77
class Tensor;

Y
Yi Wang 已提交
78
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
79
                const platform::DeviceContext& ctx, Tensor* dst);
80 81
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, pten::DenseTensor* dst);
C
chengduo 已提交
82 83 84 85 86 87 88 89

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
Y
Yi Wang 已提交
90 91
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst);
92 93
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                pten::DenseTensor* dst);
C
chengduo 已提交
94

F
fengjiayi 已提交
95 96
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst);
D
dzhwinter 已提交
97

Y
Yi Wang 已提交
98 99 100 101 102
template <typename T>
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst);
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
103

Y
Yi Wang 已提交
104 105 106 107 108
template <typename T>
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
109

110
// copy the result bool to cpu
Y
Yi Wang 已提交
111 112
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
113 114 115 116 117 118
bool TensorIsfinite(const framework::Tensor& tensor);

// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
D
dzhwinter 已提交
119

Y
Yi Wang 已提交
120 121 122 123
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
T
tangwei12 已提交
124 125 126
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape);
D
dzhwinter 已提交
127

J
Jack Zhou 已提交
128 129 130 131 132 133 134
// store the bool result tensor in out tensor
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out);

6
633WHU 已提交
135 136 137
// convert dlpack's DLTensor to tensor
void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst);

Y
Yi Wang 已提交
138 139 140
//
// The implementation of template functions.
//
D
dzhwinter 已提交
141

142 143 144 145 146 147 148 149 150 151 152
template <typename T>
void TensorFromArray(const T* src, const size_t& array_size,
                     const platform::DeviceContext& ctx, Tensor* dst) {
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(array_size)});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = array_size * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
153 154
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
155
  }
156
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
157 158
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
159 160
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
161 162 163
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->type());
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
        BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
        npu_pinned_place, npu_pinned_ptr, size,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
186
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
187 188 189 190 191
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
  }
#endif
192
}
193

D
dzhwinter 已提交
194
template <typename T>
Y
Yi Wang 已提交
195 196
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst) {
D
dzhwinter 已提交
197 198 199 200 201 202 203 204
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
205 206
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
D
dzhwinter 已提交
207
  }
208
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
209 210
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
211 212
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
D
dzhwinter 已提交
213 214 215
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
216
#ifdef PADDLE_WITH_ASCEND_CL
217 218 219 220 221 222
  // NOTE(zhiqiu): Becareful that aclrtMemcpyAsync is different from
  // cudaMemcpyAsync.
  // cudaMemcpyAsync is actually "sync" between cpu <-> gpu.
  // aclrtMemcpyAsync is really "async" between cpu <-> npu.
  // Since vector is on cpu, I think this function should be a "sync" operation,
  // so pass nullptr as stream to  memory::Copy().
223
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    //  1. vector -> npu pinned tensor
    Tensor npu_pinned_tensor(dst->type());
    platform::NPUPinnedPlace npu_pinned_place;
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data<T>(dst->dims(), npu_pinned_place);
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
        BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
        npu_pinned_place, npu_pinned_ptr, size,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
243
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
244 245 246
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
247 248
  }
#endif
F
fwenguang 已提交
249 250 251 252 253 254 255 256
#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(dst_place)) {
    memory::Copy(
        BOOST_GET_CONST(platform::MLUPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
#endif
D
dzhwinter 已提交
257 258
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
// The fully specialized function should be inline to avoid
// multi-definition.
template <>
inline void TensorFromVector(const std::vector<bool>& src,
                             const platform::DeviceContext& ctx, Tensor* dst) {
  // vector<bool> has no data() member, use array instead.
  // See details:
  // https://stackoverflow.com/questions/46115669/why-does-stdvectorbool-have-no-data/46115714
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }

  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  if (platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->type());
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
        BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
        npu_pinned_place, npu_pinned_ptr, size,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
313
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
314 315 316
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
317 318 319 320 321
  }
#endif
  delete[] array;
}

D
dzhwinter 已提交
322
template <typename T>
Y
Yi Wang 已提交
323
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
324 325 326 327 328 329 330 331 332 333
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
template <>
inline void TensorFromVector(const std::vector<bool>& src, Tensor* dst) {
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  delete[] array;
}

D
dzhwinter 已提交
351
template <typename T>
Y
Yi Wang 已提交
352 353
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst) {
D
dzhwinter 已提交
354 355 356 357 358 359 360 361
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
362
    memory::Copy(dst_place, dst_ptr,
363 364
                 BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr,
                 size);
D
dzhwinter 已提交
365
  }
366
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
367 368
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
369
        dst_place, dst_ptr, BOOST_GET_CONST(platform::CUDAPlace, src.place()),
370
        src_ptr, size,
D
dzhwinter 已提交
371 372 373
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
374 375 376 377 378 379 380
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src.place()), src_ptr,
                 size);
  }
#endif
381 382
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
383 384 385
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src.place()), src_ptr,
                 size, nullptr);
386 387
  }
#endif
F
fwenguang 已提交
388 389 390 391 392 393 394 395
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
    memory::Copy(
        dst_place, dst_ptr, BOOST_GET_CONST(platform::MLUPlace, src.place()),
        src_ptr, size,
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
#endif
D
dzhwinter 已提交
396 397
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
template <>
inline void TensorToVector(const Tensor& src,
                           const platform::DeviceContext& ctx,
                           std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  if (platform::is_cpu_place(src.place())) {
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr,
                 size);
  }
416
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
417 418 419 420 421 422 423
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
        dst_place, dst_ptr, BOOST_GET_CONST(platform::CUDAPlace, src.place()),
        src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
424 425 426 427 428 429 430
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src.place()), src_ptr,
                 size);
  }
#endif
431 432
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
433 434 435
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src.place()), src_ptr,
                 size, nullptr);
436
  }
F
fwenguang 已提交
437 438 439 440 441 442 443 444
#endif
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
    memory::Copy(
        dst_place, dst_ptr, BOOST_GET_CONST(platform::MLUPlace, src.place()),
        src_ptr, size,
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
445 446 447 448 449 450 451
#endif
  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

D
dzhwinter 已提交
452
template <typename T>
Y
Yi Wang 已提交
453
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
454 455 456 457 458 459 460
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

461 462 463 464 465
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));
D
dzhwinter 已提交
466

467 468
  memory::Copy(dst_place, dst_ptr,
               BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr, size);
D
dzhwinter 已提交
469
}
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
template <>
inline void TensorToVector(const Tensor& src, std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));

  memory::Copy(dst_place, dst_ptr,
               BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr, size);

  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

497
std::ostream& operator<<(std::ostream& os, const Tensor& t);
D
dzhwinter 已提交
498 499
}  // namespace framework
}  // namespace paddle