device_context.h 26.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

W
Wilber 已提交
13
#include <functional>
14
#include <future>  // NOLINT
D
dzhwinter 已提交
15
#include <memory>
Y
yuyang18 已提交
16
#include <mutex>  // NOLINT
17
#include <string>
D
dzhwinter 已提交
18
#include <unordered_map>
19
#include <utility>
20
#include <vector>
W
wanghuancoder 已提交
21

W
Wilber 已提交
22
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
W
Wilber 已提交
23
#include "paddle/pten/backends/cpu/cpu_context.h"
W
Wilber 已提交
24
#include "paddle/pten/backends/gpu/gpu_decls.h"
W
Wilber 已提交
25 26
#include "paddle/pten/core/device_context.h"

Y
Yu Yang 已提交
27
#include "paddle/fluid/memory/malloc.h"
28
#ifdef PADDLE_WITH_CUDA
29
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
30 31
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
32
#include "paddle/fluid/platform/dynload/cusolver.h"
33
#include "paddle/fluid/platform/dynload/cusparse.h"
W
Wilber 已提交
34
#include "paddle/pten/backends/gpu/gpu_context.h"
35
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
36
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
37
#endif
38
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
39
#endif
D
dzhwinter 已提交
40

41
#ifdef PADDLE_WITH_HIP
42
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
43 44
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
W
Wilber 已提交
45
#include "paddle/pten/backends/gpu/gpu_context.h"  // NOLINT
46 47 48
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
49
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
50 51
#endif

52 53 54 55
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
56
#ifdef PADDLE_WITH_MKLDNN
57
#include "dnnl.hpp"
58
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
59 60
#endif

61
#include <map>
W
wanghuancoder 已提交
62

63
#include "glog/logging.h"
Y
Yi Wang 已提交
64 65
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
66
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
67
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
68
#endif
69
#ifdef PADDLE_WITH_ASCEND_CL
70 71
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
72
#endif
Q
qijun 已提交
73
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
74

W
wanghuancoder 已提交
75 76 77 78 79
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

80
#ifdef PADDLE_WITH_XPU
81 82
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
W
Wilber 已提交
83
#include "paddle/pten/backends/xpu/xpu_context.h"
84 85
#endif

86 87
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
88
#include "paddle/fluid/platform/device/npu/npu_info.h"
89 90
#endif

Q
QI JUN 已提交
91 92 93
namespace paddle {
namespace platform {

94
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
95 96 97 98
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
99
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
100 101 102 103
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
104 105
#endif  // PADDLE_WITH_CUDA

106 107 108 109
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
110
  NPU = 3,
J
jianghaicheng 已提交
111
  IPU = 4,
F
fwenguang 已提交
112 113 114
  MLU = 5,

  MAX_DEVICE_TYPES = 6,
115 116
};

117 118
DeviceType Place2DeviceType(const platform::Place& place);

119 120 121
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
122
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
123
constexpr DeviceType kIPU = DeviceType::IPU;
F
fwenguang 已提交
124
constexpr DeviceType kMLU = DeviceType::MLU;
125

W
Wilber 已提交
126
using DeviceContext = pten::DeviceContext;
Q
QI JUN 已提交
127

W
Wilber 已提交
128 129 130 131
// using CPUDeviceContext = pten::CPUContext;
// TODO(wilber): The place constructor is used in many places, it is more
// difficult to use CPUDeviceContext = pten::CPUContext directly.
class CPUDeviceContext : public pten::CPUContext {
Q
qijun 已提交
132
 public:
133
  CPUDeviceContext();
Q
qijun 已提交
134
  explicit CPUDeviceContext(CPUPlace place);
Q
QI JUN 已提交
135 136
};

Y
Yang Yu 已提交
137 138 139 140 141 142 143 144
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

J
jianghaicheng 已提交
145 146 147 148 149 150 151 152
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
153
  const Place& GetPlace() const override;
J
jianghaicheng 已提交
154 155 156 157 158 159 160 161 162 163
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  IPUPlace place_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};
F
fwenguang 已提交
164
#endif
J
jianghaicheng 已提交
165

F
fwenguang 已提交
166 167 168 169 170
#ifdef PADDLE_WITH_MLU
class MLUDeviceContext;

template <>
struct DefaultDeviceContextType<platform::MLUPlace>;
J
jianghaicheng 已提交
171 172
#endif

173
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
174
namespace xpu = baidu::xpu::api;
W
Wilber 已提交
175
class XPUDeviceContext : public pten::XPUContext {
176 177 178 179 180 181 182 183 184 185 186 187 188
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

189 190 191 192 193 194
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
195
  const Place& GetPlace() const override;
196
  aclrtContext context() const;
197

198 199 200 201 202 203
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

204 205 206 207 208 209 210
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

226 227 228
 private:
  NPUPlace place_;
  aclrtContext context_;
229 230 231 232

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
248 249 250 251 252 253 254

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

W
Wilber 已提交
255
  const Place& GetPlace() const override;
256 257 258 259 260 261 262 263 264 265 266 267 268

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

269 270 271
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
272
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
273
class EigenCudaStreamDevice;
S
sneaxiy 已提交
274

275 276 277 278 279
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
280 281
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

297 298 299 300 301 302
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

W
Wilber 已提交
303 304
  void SetStream(gpuStream_t stream);

305
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
306

307 308 309
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
310
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
311
#endif
312

313
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
314 315 316
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
317
#endif
G
Guo Sheng 已提交
318

319 320 321 322 323 324 325 326
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

Z
zhangkaihuo 已提交
327 328 329 330 331 332
#ifndef PADDLE_WITH_HIP
  const std::unique_ptr<CusparseHandleHolder>& CusparseHandle() const {
    return cusparse_handle_;
  }
#endif

333
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
334 335
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
336
    if (cublas_tf32_tensor_core_handle_) {
W
Wilber 已提交
337
      cublas_tf32_tensor_core_handle_->Call(callback);
338
    } else {
W
Wilber 已提交
339
      cublas_handle_->Call(callback);
340
    }
341 342
  }

Z
zhangkaihuo 已提交
343 344
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
345 346 347
  inline void CusparseCall(
      const std::function<void(pten::sparseHandle_t)>& callback) const {
    cusparse_handle_->Call(callback);
Z
zhangkaihuo 已提交
348 349 350
  }
#endif

351 352 353 354 355
  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
356 357
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
358
    if (cublas_tensor_core_handle_) {
W
Wilber 已提交
359
      cublas_tensor_core_handle_->Call(callback);
360
    } else {
W
Wilber 已提交
361
      cublas_handle_->Call(callback);
362 363 364 365 366 367
    }
  }

 private:
  void InitEigenContext();

368 369 370 371 372
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
373 374 375 376 377 378 379
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
380 381 382 383 384
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
385 386
    }
  }
387
#endif
388

Z
zhangkaihuo 已提交
389 390 391 392 393 394
#ifndef PADDLE_WITH_HIP
  void InitCuSparseContext() {
    cusparse_handle_.reset(new CusparseHandleHolder(RawStream()));
  }
#endif

395 396
  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
397 398
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
399
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
400 401
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
402 403
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
404 405 406 407
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
408 409
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
410
            << ", but MIOPEN version in your machine is "
411
            << local_miopen_version / 100 << "." << local_miopen_version % 100
412 413 414 415
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
416 417
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
418 419
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
420 421 422 423 424 425 426 427 428 429 430 431 432
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
433 434
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
435
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
436
#endif
437 438 439 440 441
    } else {
      cudnn_handle_ = nullptr;
    }
  }

442
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
443
  void InitCuSolverContext() {
444 445
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
446 447
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
448
#endif
G
Guo Sheng 已提交
449

450 451
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
452
#ifdef PADDLE_WITH_HIP
453
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
454
#else
455
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
456
#endif
457 458 459 460 461 462 463
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
464
    cublas_tf32_tensor_core_handle_.reset();
465 466
  }

Z
zhangkaihuo 已提交
467 468 469 470
#ifndef PADDLE_WITH_HIP
  void DestoryCuSparseContext() { cusparse_handle_.reset(); }
#endif

471
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
472 473
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
474
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
475 476 477
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
478
#endif
G
Guo Sheng 已提交
479

480 481 482 483
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
484 485 486
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
487
  cudnnHandle_t cudnn_handle_;
488
#endif
489 490
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
491
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
492
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
493
  cusolverDnHandle_t cusolver_dn_handle_;
Z
zhangkaihuo 已提交
494
  std::unique_ptr<CusparseHandleHolder> cusparse_handle_;
495
#endif
496 497 498
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

W
Wilber 已提交
499
class CUDADeviceContext : public pten::GPUContext {
Q
QI JUN 已提交
500
 public:
D
dzhwinter 已提交
501
  explicit CUDADeviceContext(CUDAPlace place);
502
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
503

504
  /*! \brief  Wait for all operations completion in the stream. */
505
  void Wait() const override;
Q
QI JUN 已提交
506

507 508 509
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

510
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
511 512 513 514 515 516
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
      pten::GPUContext::CublasCall(callback);
      return;
    }
517
    return context()->CublasCall(callback);
518 519
  }

Z
zhangkaihuo 已提交
520 521
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
522 523 524 525 526 527 528
  inline void CusparseCall(
      const std::function<void(pten::sparseHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
      pten::GPUContext::CusparseCall(callback);
      return;
    }
    context()->CusparseCall(callback);
Z
zhangkaihuo 已提交
529 530 531
  }
#endif

532 533
  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
534 535 536 537 538 539 540
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
      pten::GPUContext::TensorCoreCublasCallIfAvailable(callback);
      return;
    }
    context()->TensorCoreCublasCallIfAvailable(callback);
541
  }
S
sneaxiy 已提交
542

543 544 545 546
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
547
  cudnnHandle_t cudnn_handle() const;
548
#endif
549

550 551 552 553
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
554
  cublasHandle_t cublas_handle() const;
Z
zhangkaihuo 已提交
555
  cusparseHandle_t cusparse_handle() const;
556
#endif
557

W
Wilber 已提交
558 559 560 561
#ifndef PADDLE_WITH_HIP
  cusolverDnHandle_t cusolver_dn_handle() const;
#endif

S
sneaxiy 已提交
562 563 564 565 566 567 568 569 570
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
571
  /*! \brief  Return cuda stream in the device context. */
572
  gpuStream_t stream() const;
Q
QI JUN 已提交
573

W
Wilber 已提交
574
  void RecordEvent(gpuEvent_t ev, const std::function<void()>& callback) const;
575

W
Wilber 已提交
576
  void AddStreamCallback(const std::function<void()>& callback) const;
577

W
Wilber 已提交
578
  void WaitStreamCallback() const;
579

580
  void ResetThreadContext(const stream::Priority& priority) {
581
    std::lock_guard<std::mutex> guard(ctx_mtx_);
W
Wilber 已提交
582
    thread_ctx_[this].reset(new CUDAContext(this->GetPlace(), priority));
583 584
  }

W
Wilber 已提交
585
  std::shared_ptr<CUDAContext> context() const;
S
sneaxiy 已提交
586

W
Wilber 已提交
587 588 589 590 591
  // Note: Can only be used under thread_local semantics.
  void SetThreadLocalStream(const gpuStream_t stream) {
    thread_ctx_.at(this)->SetStream(stream);
  }

W
Wilber 已提交
592 593 594 595
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  stream::CUDAStream* GetCudaStream() const;
  stream::CUDAStream* SetCudaStream(stream::CUDAStream*);
Q
QI JUN 已提交
596

W
Wilber 已提交
597
 private:
598 599 600 601 602 603
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
604

605 606
  mutable std::mutex cudnn_handle_mtx_;

W
Wilber 已提交
607 608 609
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  std::unique_ptr<stream::CUDAStream> cuda_stream_;
Y
yuyang18 已提交
610

611
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
612
};
Q
qijun 已提交
613

614 615
class CudnnWorkspaceHandle {
 public:
616 617
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
618 619 620 621 622 623 624 625

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
626 627 628 629
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
630 631 632 633 634 635 636 637 638 639 640 641 642
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

643
  void ReallocWorkspace(size_t required_workspace_bytes);
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
660
  std::mutex* mtx_;
661 662
};

Y
Yang Yu 已提交
663 664
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
665
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
666 667
};

C
chengduoZH 已提交
668
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
669 670 671 672 673
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

W
Wilber 已提交
674
  const Place& GetPlace() const override;
C
chengduoZH 已提交
675

C
chengduoZH 已提交
676 677 678 679 680 681 682 683 684 685 686
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
687
#endif
Q
qijun 已提交
688

T
tensor-tang 已提交
689
#ifdef PADDLE_WITH_MKLDNN
690 691 692 693 694 695

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
696
    bool said_once = false;
697 698 699 700 701 702 703 704 705 706 707
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
708
    // MKL-DNN stream used for execution of primitives (per-thread)
709 710
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
711 712
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
713
    void* exec_ptr_ = nullptr;
714 715

    Body();
716
    ~Body();
717 718 719 720 721 722
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
723
    void log_lib_version(void);
724 725
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
726 727 728 729
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
730 731
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
747

T
tensor-tang 已提交
748 749
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
750 751 752 753 754 755 756 757 758 759
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
760
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
761 762 763
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
764
  using ShapeBlob = umap_key_string_t<KeyBlob>;
765 766
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

767 768 769 770
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
771
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
772 773 774
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
775

T
tensor-tang 已提交
776 777 778
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
779
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
780

781
  // Register object to currently used executor's map
782 783
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
784

785
  // Remove all entries from the blob map
786
  void ResetBlobMap(void* ptr);
787 788 789

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
790

791 792 793
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

794 795
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
796

797
  // Calculate number of oneDNN objects cached
798
  unsigned int GetCachedObjectsNumber(void) const;
799

800 801
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
802

803 804 805 806
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
807
 private:
808
  std::shared_ptr<BlobMap> p_blobmap_;
809 810
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
811
  std::shared_ptr<ExecShape> p_exec_items_;
812
  std::shared_ptr<std::mutex> p_mutex_;
813
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
814 815 816
};
#endif

D
dzhwinter 已提交
817 818 819 820 821
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
822
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
823 824 825
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
826 827 828 829
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
830
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
831 832 833 834 835 836
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

837 838
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
839
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
840
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
841

Y
Yang Yu 已提交
842 843 844 845 846 847 848
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

849 850
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
851 852
 private:
  static DeviceContextPool* pool;
853 854
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
855 856 857
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
858 859
}  // namespace platform
}  // namespace paddle