pool3d_op.cc 9.0 KB
Newer Older
F
feng_shuai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/pool3d_op_plugin.h"

namespace paddle {
namespace framework {
class Scope;

namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {

inline void DealCeilMode(const nvinfer1::Dims &input_shape,
                         std::vector<int> ksize, std::vector<int> strides,
33 34
                         std::vector<int> paddings, nvinfer1::Dims3 *pre_pad,
                         nvinfer1::Dims3 *post_pad, int input_dims) {
F
feng_shuai 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  int input_depth = input_shape.d[input_dims - 3];
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];

  int floor_d_output_size =
      (input_depth - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_d_output_size =
      (input_depth - ksize[0] + 2 * paddings[0] + strides[0] - 1) / strides[0] +
      1;

  int floor_h_output_size =
      (input_height - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_h_output_size =
      (input_height - ksize[1] + 2 * paddings[1] + strides[1] - 1) /
          strides[1] +
      1;

  int floor_w_output_size =
      (input_width - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
  int ceil_w_output_size =
      (input_width - ksize[2] + 2 * paddings[2] + strides[2] - 1) / strides[2] +
      1;

  if (floor_d_output_size != ceil_d_output_size) {
59
    post_pad->d[0] = strides[0] - 1;
F
feng_shuai 已提交
60 61 62
  }

  if (floor_h_output_size != ceil_h_output_size) {
63
    post_pad->d[1] = strides[1] - 1;
F
feng_shuai 已提交
64 65 66
  }

  if (floor_w_output_size != ceil_w_output_size) {
67
    post_pad->d[2] = strides[2] - 1;
F
feng_shuai 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  }
}

class Pool3dOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
    VLOG(4)
        << "convert a fluid pool3d op to tensorrt pool3d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

    bool global_pooling =
        BOOST_GET_CONST(bool, op_desc.GetAttr("global_pooling"));
    std::string pool_type =
        BOOST_GET_CONST(std::string, op_desc.GetAttr("pooling_type"));
    std::vector<int> ksize =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ksize"));
    std::vector<int> strides =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
    std::vector<int> paddings =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
    bool exclusive = op_desc.HasAttr("exclusive")
                         ? BOOST_GET_CONST(bool, op_desc.GetAttr("exclusive"))
                         : true;
    bool ceil_mode = BOOST_GET_CONST(bool, op_desc.GetAttr("ceil_mode"));
    bool adaptive = false;
    if (op_desc.HasAttr("adaptive"))
      adaptive = BOOST_GET_CONST(bool, op_desc.GetAttr("adaptive"));
    std::string padding_algorithm = "EXPLICIT";
    if (op_desc.HasAttr("padding_algorithm"))
      padding_algorithm =
          BOOST_GET_CONST(std::string, op_desc.GetAttr("padding_algorithm"));
    if (padding_algorithm == "VALID" || padding_algorithm == "SAME") {
      std::fill(paddings.begin(), paddings.end(), 0);
    }

    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
    nvinfer1::ReduceOperation reduce_operation =
        nvinfer1::ReduceOperation::kMAX;
    plugin::Pool3DPlugin::Pool3DType plugin_pool_type =
        plugin::Pool3DPlugin::Pool3DType::max;
    if (pool_type == "max") {
      nv_pool_type = nvinfer1::PoolingType::kMAX;
      reduce_operation = nvinfer1::ReduceOperation::kMAX;
      plugin_pool_type = plugin::Pool3DPlugin::Pool3DType::max;
    } else if (pool_type == "avg") {
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
      reduce_operation = nvinfer1::ReduceOperation::kAVG;
      plugin_pool_type = plugin::Pool3DPlugin::Pool3DType::avg;
    }
121 122 123
    nvinfer1::Dims3 nv_ksize(ksize[0], ksize[1], ksize[2]);
    nvinfer1::Dims3 nv_strides(strides[0], strides[1], strides[2]);
    nvinfer1::Dims3 nv_paddings(paddings[0], paddings[1], paddings[2]);
F
feng_shuai 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    nvinfer1::ILayer *layer = nullptr;
    if (op_desc.HasAttr("enable_int8")) {
      CHECK(op_desc.HasAttr("X_scale"));
      float input_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
      engine_->SetTensorDynamicRange(input1, input_scale);
    }

    if (engine_->with_dynamic_shape()) {
      if (!adaptive && !global_pooling && !ceil_mode) {
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, PoolingNd, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStrideNd(nv_strides);
        pool_layer->setPaddingNd(nv_paddings);
        pool_layer->setAverageCountExcludesPadding(exclusive);
        layer = pool_layer;
      } else if (global_pooling) {
        auto *reduce_layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *input1,
                                                  reduce_operation, 28, true);
        layer = reduce_layer;
      } else {
        plugin::Pool3DPluginDynamic *plugin = new plugin::Pool3DPluginDynamic(
            ceil_mode, pool_type, adaptive, ksize, strides, paddings,
            global_pooling);
        layer = engine_->AddDynamicPlugin(&input1, 1, plugin);
      }
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool3d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

    if (global_pooling == true) {
      auto *reduce_layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *input1,
                                                reduce_operation, 14, true);
      layer = reduce_layer;
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool3d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

    if (!adaptive) {
      if (!ceil_mode) {
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, PoolingNd, *input1,
                                                nv_pool_type, nv_ksize);
        PADDLE_ENFORCE_NOT_NULL(
            pool_layer,
            platform::errors::Fatal(
                "trt pool layer in converter could not be created."));
        pool_layer->setStrideNd(nv_strides);
        pool_layer->setPaddingNd(nv_paddings);
        pool_layer->setAverageCountExcludesPadding(exclusive);
        layer = pool_layer;
      } else {
        std::vector<int> input_shape_v;
        for (int i = 0; i < input_dims; i++) {
          input_shape_v.push_back(input_shape.d[i]);
        }
        plugin::Pool3DPlugin *plugin =
            new plugin::Pool3DPlugin(ceil_mode, plugin_pool_type, adaptive,
                                     ksize, strides, paddings, input_shape_v);
        auto *pool_layer = engine_->AddPluginV2Ext(&input1, 1, plugin);
        PADDLE_ENFORCE_NOT_NULL(
            pool_layer,
            platform::errors::Fatal(
                "trt pool3d plugin layer in converter could not be created."));
        layer = pool_layer;
      }
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
      }
      plugin::Pool3DPlugin *plugin =
          new plugin::Pool3DPlugin(ceil_mode, plugin_pool_type, adaptive, ksize,
                                   strides, paddings, input_shape_v);
      auto *pool_layer = engine_->AddPluginV2Ext(&input1, 1, plugin);
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer,
          platform::errors::Fatal(
              "trt pool3d plugin layer in converter could not be created."));
      layer = pool_layer;
    }
    auto output_name = op_desc.Output("Out")[0];
    RreplenishLayerAndOutput(layer, "pool3d", {output_name}, test_mode);
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool3d);
REGISTER_TRT_OP_CONVERTER(pool3d, Pool3dOpConverter);