eager.cc 48.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13
#include "paddle/fluid/pybind/eager.h"

14 15 16 17 18
#include <Python.h>

#include <string>
#include <vector>

19
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
20 21 22
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
23
#include "paddle/fluid/framework/convert_utils.h"
24 25 26 27
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager_utils.h"
28 29 30
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
31
#include "pybind11/detail/internals.h"
32 33
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
34
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
35
#include "paddle/fluid/framework/python_headers.h"
36
#include "paddle/fluid/pybind/eager_op_function_impl.h"
37
#include "paddle/fluid/pybind/tensor_py.h"
38
#include "paddle/phi/api/lib/utils/tensor_utils.h"
J
Jack Zhou 已提交
39
#include "paddle/phi/core/string_tensor.h"
40 41 42 43 44
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

45
PyTypeObject* p_tensor_type;
J
Jack Zhou 已提交
46
PyTypeObject* p_string_tensor_type;  // For StringTensor
47
extern PyTypeObject* g_vartype_pytype;
48
extern PyTypeObject* g_framework_tensor_pytype;
49

50
PyObject* TensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
51 52
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
53 54
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
55 56 57 58
  }
  return obj;
}

59
// TODO(jiabin): Overload this once we need more constructor in Python
60 61
void EmptyTensorInitializer(TensorObject* self,
                            const std::string& name,
62
                            const paddle::platform::Place& place,
63 64
                            bool persistable = false,
                            int stop_gradient = -1,
65 66
                            framework::proto::VarType::Type dtype =
                                paddle::framework::proto::VarType::FP32,
67
                            const std::vector<int>& dims = {0},
68 69
                            framework::proto::VarType::Type var_type =
                                paddle::framework::proto::VarType::LOD_TENSOR) {
70
  auto ddims = phi::make_ddim(dims);
71 72
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
73
  autograd_meta->SetPersistable(persistable);
74 75 76
  if (stop_gradient != -1) {
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  }
77 78
  if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) {
    // TODO(jiabin): Maybe support LOD later
79
    std::shared_ptr<phi::DenseTensor> dense_tensor = nullptr;
80
    if (dims.size() == 1 && dims[0] == 0) {
81 82 83 84 85 86 87 88
      std::shared_ptr<phi::Allocation> allocation_ptr = nullptr;
      dense_tensor = std::make_shared<phi::DenseTensor>(
          allocation_ptr,
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    } else {
      // TODO(dev): we need enhance check for ddims.
      dense_tensor = std::make_shared<phi::DenseTensor>(
Z
zyfncg 已提交
89
          std::make_shared<phi::Allocation>(),
90 91 92
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    }
93
    self->tensor.set_impl(dense_tensor);
94 95 96 97
  } else if (var_type == paddle::framework::proto::VarType::SELECTED_ROWS) {
    std::shared_ptr<phi::SelectedRows> tensor =
        std::make_shared<phi::SelectedRows>();
    self->tensor.set_impl(tensor);
98 99 100
  }

  if (!autograd_meta->GetMutableGradNode()) {
101 102
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
103 104 105
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation"
            << autograd_meta->GradNode() << " for it.";
106 107 108
  }
}

109 110
void EmptyStringTensorInitializer(TensorObject* self,
                                  const std::string& name,
J
Jack Zhou 已提交
111 112 113 114 115 116 117
                                  const paddle::platform::Place& place,
                                  const std::vector<int>& dims = {}) {
  auto ddims = phi::make_ddim(dims);
  self->tensor.set_name(name);
  // Note(zhoushunjie): Only support CPUPlace when create StringTensor
  auto actual_place = platform::CPUPlace();
  // Allocate memory
118
  paddle::experimental::DefaultAllocator string_allocator(actual_place);
J
Jack Zhou 已提交
119
  std::shared_ptr<phi::StringTensor> string_tensor =
120 121
      std::make_shared<phi::StringTensor>(&string_allocator,
                                          phi::StringTensorMeta{ddims});
J
Jack Zhou 已提交
122 123 124 125 126 127
  if (phi::product(ddims) > 0) {
    string_tensor->mutable_data(actual_place);
  }
  self->tensor.set_impl(string_tensor);
}

128 129
void InitTensorWithNumpyValue(TensorObject* self,
                              const py::object& array,
130
                              const paddle::platform::Place& place,
131
                              bool zero_copy = false) {
132
  PADDLE_ENFORCE_EQ(
133 134
      self->tensor.defined(),
      true,
135
      paddle::platform::errors::Fatal(
136 137
          "Calling InitTensorWithNumpyValue of Eager Tensor without "
          "EmptyTensorInitializer is "
138 139
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
140 141
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
142
  if (platform::is_cpu_place(place)) {
143
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
144
  } else if (platform::is_xpu_place(place)) {
145
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
146
  } else if (platform::is_gpu_place(place)) {
147 148
    SetTensorFromPyArray<platform::CUDAPlace>(
        impl_ptr, array, place, zero_copy);
149
  } else if (platform::is_cuda_pinned_place(place)) {
150 151
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        impl_ptr, array, place, zero_copy);
152
  } else if (platform::is_npu_place(place)) {
153
    SetTensorFromPyArray<platform::NPUPlace>(impl_ptr, array, place, zero_copy);
154
  } else if (platform::is_custom_place(place)) {
155 156
    SetTensorFromPyArray<platform::CustomPlace>(
        impl_ptr, array, place, zero_copy);
157 158 159
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
160
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/CustomPlace"));
161 162 163
  }
}

J
Jack Zhou 已提交
164 165
void InitStringTensorWithNumpyValue(TensorObject* self, const py::object& obj) {
  PADDLE_ENFORCE_EQ(
166 167
      self->tensor.defined(),
      true,
J
Jack Zhou 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
      paddle::platform::errors::Fatal(
          "Calling InitStringTensorWithNumpyValue of Eager StringTensor "
          "without "
          "EmptyStringTensorInitializer is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
  phi::StringTensor* impl_ptr =
      static_cast<phi::StringTensor*>(self->tensor.impl().get());
  paddle::platform::Place place = impl_ptr->place();
  auto array = obj.cast<py::array>();
  if (platform::is_cpu_place(place)) {
    SetStringTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor only support CPUPlace now, but receive %s",
        place.DebugString()));
  }
}

187 188 189 190
void InitTensorWithTensor(TensorObject* self,
                          const paddle::experimental::Tensor& src,
                          const paddle::platform::Place& place,
                          const std::string& name) {
191
  self->tensor.set_name(name);
C
Chen Weihang 已提交
192
  if (place == src.place()) {
193
    self->tensor.set_impl(src.impl());
194 195
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
196
    self->tensor.set_impl(src.copy_to(place, true).impl());
197 198 199
    VLOG(4) << "Different place, do TensorCopy";
  }
  if (src.get_autograd_meta()) {
200
    egr::EagerUtils::autograd_meta(&(self->tensor))
201 202 203
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
204
    egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
205 206 207
  }
}

208 209 210 211
void InitTensorWithFrameworkTensor(TensorObject* self,
                                   const framework::Tensor& src,
                                   const paddle::platform::Place& place,
                                   const std::string& name) {
212
  self->tensor.set_name(name);
213
  if (place == src.place()) {
214
    self->tensor.set_impl(std::make_shared<phi::DenseTensor>(src));
215 216
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
217
    auto temp =
218
        paddle::experimental::Tensor(std::make_shared<phi::DenseTensor>(src));
219
    self->tensor.set_impl(temp.copy_to(place, true).impl());
220 221
    VLOG(4) << "Different place, do TensorCopy";
  }
222
  egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
223
}
224

J
Jack Zhou 已提交
225 226 227 228 229 230 231 232 233 234 235
void InitStringTensorWithStringTensor(TensorObject* self,
                                      const paddle::experimental::Tensor& src,
                                      const paddle::platform::Place& place,
                                      const std::string& name) {
  self->tensor.set_name(name);
  auto impl = std::static_pointer_cast<phi::StringTensor>(src.impl());
  self->tensor.set_impl(impl);
  VLOG(4)
      << "Do ShareDataWith when using StringTensor to initialize StringTensor";
}

236 237
py::object ParsePyArray(
    std::unordered_map<std::string, PyObject*> kws_map,
238 239 240 241
    std::unordered_map<std::string, Py_ssize_t> kw_order_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  py::object numpy_value = py::object();

  if (kw_order_map["value"] <= args_num) {
    numpy_value = py::object(
        py::handle(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1)), true);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      numpy_value = py::object(py::handle(kws_map["value"]), true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected arguments is {value: PyArray}, "
          "but could not parse the first argument {value: PyArray} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  return numpy_value;
}

paddle::platform::Place ParsePlace(
    std::unordered_map<std::string, PyObject*> kws_map,
264 265 266 267
    std::unordered_map<std::string, Py_ssize_t> kw_order_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();

  if (kw_order_map["place"] <= args_num) {
    place = CastPyArg2Place(PyTuple_GET_ITEM(args, kw_order_map["place"] - 1),
                            kw_order_map["place"] - 1);
  } else {
    if (flag_kwargs && kws_map["place"] != NULL) {
      place = CastPyArg2Place(kws_map["place"], 0);
    } else {
      // default
      return place;
    }
  }
  return place;
}

// boolean arguments: zero_copy, stop_gradient, persistable
286 287 288
int ParseBooleanArgs(std::string key,
                     std::unordered_map<std::string, PyObject*> kws_map,
                     std::unordered_map<std::string, Py_ssize_t> kw_order_map,
289 290 291
                     PyObject* args,
                     bool flag_kwargs,
                     Py_ssize_t args_num) {
292
  int res = -1;
293 294

  if (kw_order_map[key] <= args_num) {
295 296
    res = static_cast<int>(CastPyArg2AttrBoolean(
        PyTuple_GET_ITEM(args, kw_order_map[key] - 1), kw_order_map[key] - 1));
297 298
  } else {
    if (flag_kwargs && kws_map[key] != NULL) {
299
      res = static_cast<int>(CastPyArg2AttrBoolean(kws_map[key], 0));
300 301 302 303 304 305 306
    }
  }
  return res;
}

std::string ParseName(std::unordered_map<std::string, PyObject*> kws_map,
                      std::unordered_map<std::string, Py_ssize_t> kw_order_map,
307 308 309
                      PyObject* args,
                      bool flag_kwargs,
                      Py_ssize_t args_num,
J
Jack Zhou 已提交
310
                      std::string unique_name_prefix = "generated_tensor") {
311 312 313 314 315
  std::string act_name = "";
  if (kw_order_map["name"] <= args_num) {
    PyObject* name_obj = PyTuple_GET_ITEM(args, kw_order_map["name"] - 1);
    if (name_obj == Py_None) {
      act_name =
J
Jack Zhou 已提交
316
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
317 318 319 320 321
    } else {
      act_name = CastPyArg2AttrString(name_obj, kw_order_map["name"] - 1);
    }
  } else {
    if (flag_kwargs) {
J
Jiabin Yang 已提交
322
      if ((kws_map["name"] == NULL) || (kws_map["name"] == Py_None)) {
323
        act_name =
J
Jack Zhou 已提交
324
            egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
325 326 327 328 329
      } else {
        act_name = CastPyArg2AttrString(kws_map["name"], 0);
      }
    } else {
      act_name =
J
Jack Zhou 已提交
330
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
331 332 333 334 335
    }
  }
  return act_name;
}

336
// initialize Tensor by PyArray(first argument is PyArray,
337
// mix args and kwargs) automatically.
338 339
void AutoInitTensorByPyArray(TensorObject* py_tensor_ptr,
                             std::unordered_map<std::string, PyObject*> kws_map,
340 341
                             PyObject* args,
                             bool flag_kwargs,
342 343 344
                             Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is PyArray,
  // there are 6 arguments to construct the new Tensor,
345 346 347 348 349
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
350 351 352 353 354 355
      {"value", 1},
      {"place", 2},
      {"persistable", 3},
      {"zero_copy", 4},
      {"name", 5},
      {"stop_gradient", 6}};
356 357 358 359 360 361 362

  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  bool persistable = false;
  bool zero_copy = false;
  std::string act_name = "";
363
  int stop_gradient = -1;
364 365 366 367

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
368 369 370 371 372 373 374 375
  persistable =
      (1 ==
       ParseBooleanArgs(
           "persistable", kws_map, kw_order_map, args, flag_kwargs, args_num));
  zero_copy =
      (1 ==
       ParseBooleanArgs(
           "zero_copy", kws_map, kw_order_map, args, flag_kwargs, args_num));
376
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);
377 378
  stop_gradient = ParseBooleanArgs(
      "stop_gradient", kws_map, kw_order_map, args, flag_kwargs, args_num);
379

380 381
  EmptyTensorInitializer(
      py_tensor_ptr, act_name, place, persistable, stop_gradient);
382
  InitTensorWithNumpyValue(py_tensor_ptr, numpy_value, place, zero_copy);
383 384
}

385
// initialize Tensor by Tensor or framework::Tensor (mix args and
386
// kwargs) automatically.
387 388
void AutoInitTensorByTensor(TensorObject* py_tensor_ptr,
                            std::unordered_map<std::string, PyObject*> kws_map,
389 390
                            PyObject* args,
                            bool flag_kwargs,
391 392 393
                            Py_ssize_t args_num,
                            bool init_by_egr_tensor = true) {
  // The first argument of the Tensor constructor is Tensor or
394
  // framework Tensor,
395
  // there are 3 arguments to construct the new Tensor,
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1}, {"place", 2}, {"name", 3}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);

  if (init_by_egr_tensor) {
411
    paddle::experimental::Tensor src_tensor;
412
    if (kw_order_map["value"] <= args_num) {
413 414 415
      src_tensor =
          CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                           kw_order_map["value"] - 1);
416 417
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
418
        src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
419 420
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
421 422
            "The first expected kwargs is {value: Tensor}, "
            "but could not parse the first argument {value: Tensor} "
423 424 425 426 427
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
428
    InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
  } else {
    // init by framework tensor
    framework::Tensor src_tensor;
    if (kw_order_map["value"] <= args_num) {
      src_tensor = CastPyArg2FrameworkTensor(
          PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
          kw_order_map["value"] - 1);
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
        src_tensor = CastPyArg2FrameworkTensor(kws_map["value"], 0);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The first expected arguments is {value: framework::Tensor}, "
            "but could not parse the first argument {value: framework::Tensor} "
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
448
    InitTensorWithFrameworkTensor(py_tensor_ptr, src_tensor, place, act_name);
449 450 451
  }
}

J
Jack Zhou 已提交
452 453
void AutoInitStringTensorByPyArray(
    TensorObject* py_tensor_ptr,
454 455 456 457
    std::unordered_map<std::string, PyObject*> kws_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
J
Jack Zhou 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
  // The first argument of the StringTensor constructor is PyArray,
  // there are 4 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};
  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
473 474 475 476 477
  act_name = ParseName(kws_map,
                       kw_order_map,
                       args,
                       flag_kwargs,
                       args_num,
J
Jack Zhou 已提交
478 479 480 481 482 483 484
                       "generated_string_tensor");
  EmptyStringTensorInitializer(py_tensor_ptr, act_name, place);
  InitStringTensorWithNumpyValue(py_tensor_ptr, numpy_value);
}

void AutoInitStringTensorByStringTensor(
    TensorObject* py_tensor_ptr,
485 486 487 488
    std::unordered_map<std::string, PyObject*> kws_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
J
Jack Zhou 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501
  // The first argument of the Tensor constructor is StringTensor,
  // there are 3 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

502 503 504 505 506
  act_name = ParseName(kws_map,
                       kw_order_map,
                       args,
                       flag_kwargs,
                       args_num,
J
Jack Zhou 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
                       "generated_string_tensor");
  paddle::experimental::Tensor src_tensor;
  if (kw_order_map["value"] <= args_num) {
    src_tensor =
        CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                         kw_order_map["value"] - 1);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected kwargs is {value: Tensor}, "
          "but could not parse the first argument {value: Tensor} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  InitStringTensorWithStringTensor(py_tensor_ptr, src_tensor, place, act_name);
}

528
/** We should have init function with signature:
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
 * 1.
 * def __init__ ()
 * 2.
 * def __init__ (
 * ** dtype: paddle::framework::proto::VarType::Type,
 * ** dims: vector<int>,
 * ** name: std::string,
 * ** type: paddle::framework::proto::VarType::LodTensor,
 * ** persistable: bool)
 * 3. (multi-place)
 * (should have at least one parameter, one parameter equals to case 4, zero
 * parameter equals to case 1)
 * def __init__ (
 * ** value: ndarray,
 * ** place: paddle::platform::Place,
 * ** persistable: bool,
 * ** zero_copy: bool,
 * ** name: std::string,
 * ** stop_gradient: bool)
 * 4.
 * def __init__ (
 * ** value: ndarray)
 * 5.
 * def __init__ (
 * ** tensor: Tensor)
 * 6. (multi-place)
 * (should have at least one parameter, one parameter equals to case 5, zero
 * parameter equals to case 1.)
 * def __init__ (
 * ** tensor: Tensor,
 * ** place: paddle::platform::Place,
 * ** name: std::string)
 * 7. (multi-place) (should have at least one parameter, one parameter similar
 * to case 5, zero parameter equals to case 1.)
 * def __init__ (
 * ** tensor: FrameworkTensor,
 * ** place: paddle::platform::Place,
 * ** name: std::string)
 *  **/
568
int TensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
0
0x45f 已提交
569
  EAGER_TRY
570 571 572 573 574 575 576 577 578
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;
  PyObject* kw_persistable = NULL;
  PyObject* kw_stop_gradient = NULL;

579
  PyObject* kw_value = NULL;  // receive PyArray or Tensor
580 581 582 583 584 585 586
  PyObject* kw_place = NULL;
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;
  PyObject* kw_dtype = NULL;
  PyObject* kw_type = NULL;

  // the keywords argument
587 588 589 590 591 592 593 594 595 596
  static char* kwlist[] = {const_cast<char*>("value"),
                           const_cast<char*>("place"),
                           const_cast<char*>("persistable"),
                           const_cast<char*>("zero_copy"),
                           const_cast<char*>("name"),
                           const_cast<char*>("stop_gradient"),
                           const_cast<char*>("dims"),
                           const_cast<char*>("dtype"),
                           const_cast<char*>("type"),
                           NULL};
597 598 599 600 601 602 603

  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case2, case3, case4, case5, case6, case7.
604 605 606 607 608 609 610 611 612 613 614 615 616
  bool flag_ = PyArg_ParseTupleAndKeywords(args,
                                           kwargs,
                                           "|OOOOOOOOO",
                                           kwlist,
                                           &kw_value,
                                           &kw_place,
                                           &kw_persistable,
                                           &kw_zero_copy,
                                           &kw_name,
                                           &kw_stop_gradient,
                                           &kw_dims,
                                           &kw_dtype,
                                           &kw_type);
617 618 619 620 621 622 623 624 625 626 627 628 629

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"place", kw_place},
      {"persistable", kw_persistable},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"stop_gradient", kw_stop_gradient},
      {"dims", kw_dims},
      {"dtype", kw_dtype},
      {"type", kw_type}};

630 631
  PADDLE_ENFORCE_EQ(flag_,
                    true,
632 633 634 635 636 637 638 639
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, place, persistable, zero_copy, "
                        "name, stop_gradient, dims, dtype, type)"));

640
  PADDLE_ENFORCE_NOT_NULL(
641 642 643 644 645
      self,
      paddle::platform::errors::Fatal(
          "Calling __init__ of Eager Tensor without __new__ is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it."));
646

647
  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);
648 649

  Py_ssize_t args_num = PyTuple_Size(args);
650 651 652 653 654
  VLOG(6) << " args_num: " << args_num;

  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
655 656
      // case 1
      VLOG(6) << "Calling case1's initializer.";
657
      EmptyTensorInitializer(
658 659 660 661
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
662 663 664 665
    } else {  // no position args, all arguments are kwargs
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's initializer";
666 667
          AutoInitTensorByPyArray(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
668
          return 0;
669 670
        } else if (PyObject_IsInstance(
                       kw_value, reinterpret_cast<PyObject*>(p_tensor_type))) {
671
          VLOG(6) << "Calling case5's or case6's initializer";
672 673
          AutoInitTensorByTensor(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
674 675 676 677 678
          return 0;
        } else if (PyObject_IsInstance(kw_value,
                                       reinterpret_cast<PyObject*>(
                                           g_framework_tensor_pytype))) {
          VLOG(6) << "Calling case7's initializer.";
679 680 681 682
          AutoInitTensorByTensor(py_tensor_ptr,
                                 kws_map,
                                 args,
                                 flag_kwargs,
683 684
                                 args_num,
                                 /* false means not init by egr tensor*/ false);
685
          return 0;
686
        } else {
687 688 689
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
690
              "or Tensor or framework::Tensor. "
691 692
              "Please check your input first and make sure you are on the "
              "right way."));
693
        }
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
      } else if (kw_dtype != NULL &&
                 PyObject_IsInstance(
                     kw_dtype, reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer";

        PADDLE_ENFORCE_NOT_NULL(
            kw_dims,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dims is "
                "forbidden. Please check your code and make sure you new a "
                "dims before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_name,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL name is "
                "forbidden. Please check your code and make sure you new a "
                "name before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_dtype,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dtype is "
                "forbidden. Please check your code and make sure you new a "
                "dtype before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_persistable,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL persistable is "
                "forbidden. Please check your code and make sure you new a "
                "persistable before calling this constructor."));

        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(kw_dtype, 0);
        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);

731
        std::string act_name = "";
732
        if (kw_name == Py_None) {
733 734 735
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
736
          act_name = CastPyArg2AttrString(kw_name, 0);
737
        }
738 739 740 741 742

        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(kw_type, 0);
        bool persistable = CastPyArg2AttrBoolean(kw_persistable, 0);

743 744
        EmptyTensorInitializer(py_tensor_ptr,
                               act_name,
745 746
                               egr::Controller::Instance().GetExpectedPlace(),
                               persistable,
747 748 749 750
                               /* stop_gradient */ -1,
                               dtype,
                               dims,
                               var_type);
751

752
        return 0;
753 754
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
755 756
            "We not only support construct Tensor from numpy value "
            "or tensor(Tensor or framework::Tensor) "
757
            "with python kwargs by this initializer, "
758
            "but also even support dtype to init a empty Tensor. "
759 760
            "Please check your input first and make sure you call the existed "
            "constructor."));
761
      }
762 763 764 765 766 767 768
    }
  } else if (args_num == (Py_ssize_t)1 || args_num == (Py_ssize_t)2 ||
             args_num == (Py_ssize_t)3) {
    // 1 to 3 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
769 770
      AutoInitTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
771
      return 0;
772 773
    } else if (PyObject_IsInstance(
                   arg0_ptr, reinterpret_cast<PyObject*>(p_tensor_type))) {
774
      VLOG(6) << "Calling case5's or case6's initializer.";
775 776
      AutoInitTensorByTensor(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
777
      return 0;
778 779 780
    } else if (PyObject_IsInstance(
                   arg0_ptr,
                   reinterpret_cast<PyObject*>(g_framework_tensor_pytype))) {
781
      VLOG(6) << "Calling case7's initializer.";
782 783 784 785
      AutoInitTensorByTensor(py_tensor_ptr,
                             kws_map,
                             args,
                             flag_kwargs,
786 787
                             args_num,
                             /* false means not init by egr tensor*/ false);
788 789 790
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
791 792
          "We support construct Tensor from numpy value "
          "or tensor(Tensor or framework::Tensor) "
793
          "with python args and kwargs by this initializer, "
794
          "but the first argument should be PyArray or Tensor or "
795 796 797
          "framework::Tensor. "
          "Please check your input first and make sure you call the existed "
          "constructor."));
798
    }
799 800 801 802 803
  } else if (args_num == (Py_ssize_t)4) {
    // 4 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
804 805
      AutoInitTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
806
      return 0;
807 808 809 810 811 812 813
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 4 position args and remainting arguments arg kwargs,"
          "but the first position args should be PyArray. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
814
    }
815 816
  } else if (args_num == (Py_ssize_t)5) {
    if (!flag_kwargs) {
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(arg0_ptr,
                              reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer.";
        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
        std::vector<int> dims =
            CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2);
        }
        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
836 837
        EmptyTensorInitializer(py_tensor_ptr,
                               act_name,
838
                               egr::Controller::Instance().GetExpectedPlace(),
839 840 841 842 843
                               persistable,
                               -1,
                               dtype,
                               dims,
                               var_type);
844
        return 0;
845 846
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
847 848
        AutoInitTensorByPyArray(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
849 850 851
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
852 853 854 855 856
            "Incompatible constructor arguments, "
            "there are only 5 position args,"
            "but the first position args should be PyArray or dtype. "
            "Please check your code and make sure you call the existed "
            "constructor."));
857
      }
858
    } else {  // five position args, remainting arguments are kwargs
859
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
860 861
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's or case4's initializer";
862 863
        AutoInitTensorByPyArray(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
864
        return 0;
865
      } else {
866 867 868 869 870 871
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Incompatible constructor arguments, "
            "there are 5 position args and remainting arguments are kwargs,"
            "but the first position args should be PyArray. "
            "Please check your code and make sure the first position args is "
            "PyArray."));
872 873
      }
    }
874 875 876 877
  } else if (args_num == (Py_ssize_t)6) {
    if (!flag_kwargs) {
      // case 3
      VLOG(6) << "Calling case3's initializer.";
878 879
      AutoInitTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
880 881 882 883 884 885 886 887
      return 0;
    } else {  // six position args, remainting arguments are kwargs, but this
              // is not a right way
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 6 position args and the remainting arguments are kwargs. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
888
    }
889 890 891 892
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "Can't not find expected num of args, please check your call, and "
        "make sure u call the existed constructor."));
893
  }
894

0
0x45f 已提交
895 896
  return -1;
  EAGER_CATCH_AND_THROW_RETURN_NEG
897 898
}

J
Jack Zhou 已提交
899
/** We should have init function with signature:
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
 * 1.
 * def __init__ ()
 *
 * 2.
 * def __init__ (
 * ** dims: vector<int>,
 * ** name: std::string)
 *
 * 3.
 * (should have at least one parameter, one parameter equals to case 4, zero
 * parameter equals to case 1)
 * def __init__ (
 * ** value: ndarray,
 * ** zero_copy: bool,
 * ** name: std::string)
 *
 * 4.
 * def __init__ (
 * ** value: ndarray)
 *
 * 5.
 * def __init__ (
 * ** tensor: Tensor)
 *
 * 6.
 * (should have at least one parameter, one parameter equals to case 5, zero
 * parameter equals to case 1.)
 * def __init__ (
 * ** tensor: Tensor,
 * ** name: std::string)
 * **/
J
Jack Zhou 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943
int StringTensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;

  PyObject* kw_value = NULL;  // receive PyArray or Tensor
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;

  // the keywords argument
944 945 946 947 948
  static char* kwlist[] = {const_cast<char*>("value"),
                           const_cast<char*>("zero_copy"),
                           const_cast<char*>("name"),
                           const_cast<char*>("dims"),
                           NULL};
J
Jack Zhou 已提交
949 950 951 952 953 954
  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case1, case2, case3, case4, case 5, case 6.
955 956 957 958 959 960 961 962
  bool flag_ = PyArg_ParseTupleAndKeywords(args,
                                           kwargs,
                                           "|OOOO",
                                           kwlist,
                                           &kw_value,
                                           &kw_zero_copy,
                                           &kw_name,
                                           &kw_dims);
J
Jack Zhou 已提交
963 964 965 966 967 968 969 970

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"dims", kw_dims}};

971 972
  PADDLE_ENFORCE_EQ(flag_,
                    true,
J
Jack Zhou 已提交
973 974 975 976 977 978 979 980
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, zero_copy, name, dims)"));

  PADDLE_ENFORCE_NOT_NULL(
981 982 983 984 985
      self,
      paddle::platform::errors::Fatal(
          "Calling __init__ of Eager Tensor without __new__ is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it."));
J
Jack Zhou 已提交
986 987 988 989 990 991 992 993 994 995 996

  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);

  Py_ssize_t args_num = PyTuple_Size(args);
  VLOG(6) << " args_num: " << args_num;
  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
      // case 1
      VLOG(6) << "Calling case1's string initializer.";
      EmptyStringTensorInitializer(
997 998 999
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName(
              "generated_string_tensor"),
J
Jack Zhou 已提交
1000 1001 1002 1003 1004 1005
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
    } else {
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's string initializer";
1006 1007
          AutoInitStringTensorByPyArray(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1008
          return 0;
1009 1010 1011
        } else if (PyObject_IsInstance(
                       kw_value,
                       reinterpret_cast<PyObject*>(p_string_tensor_type))) {
J
Jack Zhou 已提交
1012
          VLOG(6) << "Calling case5's or case6's string initializer";
1013 1014
          AutoInitStringTensorByStringTensor(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
          return 0;
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
              "or StringTensor."
              "Please check your input first and make sure you are on the "
              "right way."));
        }
      } else if (kw_dims != NULL) {
        VLOG(6) << "Calling case2's string initializer.";
        std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"dims", 1},
                                                                 {"name", 2}};

        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);
1030 1031 1032 1033 1034 1035
        std::string act_name = ParseName(kws_map,
                                         kw_order_map,
                                         args,
                                         flag_kwargs,
                                         args_num,
                                         "generated_string_tensor");
J
Jack Zhou 已提交
1036
        EmptyStringTensorInitializer(
1037 1038 1039 1040
            py_tensor_ptr,
            act_name,
            egr::Controller::Instance().GetExpectedPlace(),
            dims);
J
Jack Zhou 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "We not only support construct Tensor from numpy value "
            "or StringTensor with python kwargs by this initializer, "
            "but also even support dtype to init a empty StringTensor. "
            "Please check your input first and make sure you call the existed "
            "constructor."));
      }
    }
  } else if (args_num == (Py_ssize_t)1) {  // case 3 ~ 6
    // 1 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's string initializer.";
1056 1057
      AutoInitStringTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1058
      return 0;
1059 1060 1061
    } else if (PyObject_IsInstance(
                   arg0_ptr,
                   reinterpret_cast<PyObject*>(p_string_tensor_type))) {
J
Jack Zhou 已提交
1062
      VLOG(6) << "Calling case5's or case6's string initializer.";
1063 1064
      AutoInitStringTensorByStringTensor(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Could not parse the first keyword argument successfully, "
          "the first keyword argument is value, but it should be PyArray "
          "or StringTensor."
          "Please check your input first and make sure you are on the "
          "right way."));
    }
  } else if (args_num == (Py_ssize_t)2) {  // case 2
    // 2 position args
    if (!flag_kwargs) {
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(
              arg0_ptr, reinterpret_cast<PyObject*>(p_string_tensor_type))) {
        VLOG(6) << "Calling case6's string initializer.";
1081 1082
        AutoInitStringTensorByStringTensor(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1083 1084 1085
        return 0;
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's string initializer.";
1086 1087
        AutoInitStringTensorByPyArray(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
        return 0;
      } else {
        VLOG(6) << "Calling case2's string initializer.";
        std::vector<int> dims = CastPyArg2VectorOfInt(arg0_ptr, 0);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 1);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_string_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
        }
        EmptyStringTensorInitializer(
1101 1102 1103 1104
            py_tensor_ptr,
            act_name,
            egr::Controller::Instance().GetExpectedPlace(),
            dims);
J
Jack Zhou 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
        return 0;
      }
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "Can't not find expected num of args, please check your call, and "
          "make sure u call the existed constructor."));
    }
  }
  return 1;
}

1116
static void TensorDealloc(TensorObject* self) {
1117 1118
  if (self->weakrefs != NULL)
    PyObject_ClearWeakRefs(reinterpret_cast<PyObject*>(self));
1119
  self->tensor.~Tensor();
1120 1121 1122 1123
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

extern struct PyGetSetDef variable_properties[];
J
Jack Zhou 已提交
1124
extern struct PyGetSetDef string_tensor_variable_properties[];
1125 1126

extern PyMethodDef variable_methods[];
J
Jack Zhou 已提交
1127
extern PyMethodDef string_tensor_variable_methods[];
1128

W
wanghuancoder 已提交
1129 1130 1131 1132
PyNumberMethods number_methods;
PySequenceMethods sequence_methods;
PyMappingMethods mapping_methods;

1133 1134 1135
void BindEager(pybind11::module* module) {
  auto m = module->def_submodule("eager");

1136
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
1137
      PyType_Type.tp_alloc(&PyType_Type, 0));
1138 1139
  heap_type->ht_name = ToPyObject("Tensor");
  heap_type->ht_qualname = ToPyObject("Tensor");
1140
  auto type = &heap_type->ht_type;
1141
  type->tp_name = "Tensor";
1142
  type->tp_basicsize = sizeof(TensorObject);
1143
  type->tp_dealloc = (destructor)TensorDealloc;
1144 1145 1146 1147 1148
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = variable_methods;
  type->tp_getset = variable_properties;
1149 1150
  type->tp_init = TensorInit;
  type->tp_new = TensorNew;
1151
  type->tp_weaklistoffset = offsetof(TensorObject, weakrefs);
1152 1153
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
1154 1155 1156 1157 1158
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
1159
  p_tensor_type = type;
1160 1161

  if (PyType_Ready(type) < 0) {
1162
    PADDLE_THROW(platform::errors::Fatal(
1163
        "Init Paddle error in BindEager(PyType_Ready)."));
1164 1165 1166
    return;
  }

1167
  Py_INCREF(type);
1168 1169
  if (PyModule_AddObject(m.ptr(), "Tensor", reinterpret_cast<PyObject*>(type)) <
      0) {
1170
    Py_DECREF(type);
1171 1172
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
1173
        "Init Paddle error in BindEager(PyModule_AddObject)."));
1174 1175 1176 1177
    return;
  }

  BindFunctions(m.ptr());
W
wanghuancoder 已提交
1178
  BindEagerPyLayer(m.ptr());
1179
  BindEagerOpFunctions(&m);
1180 1181
}

J
Jack Zhou 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
void BindEagerStringTensor(pybind11::module* module) {
  auto m = module->def_submodule("eager");

  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
      PyType_Type.tp_alloc(&PyType_Type, 0));
  heap_type->ht_name = ToPyObject("StringTensor");
  heap_type->ht_qualname = ToPyObject("StringTensor");
  auto type = &heap_type->ht_type;
  type->tp_name = "StringTensor";
  type->tp_basicsize = sizeof(TensorObject);
  type->tp_dealloc = (destructor)TensorDealloc;
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = string_tensor_variable_methods;
  type->tp_getset = string_tensor_variable_properties;
  type->tp_init = StringTensorInit;
  type->tp_new = TensorNew;
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
  p_string_tensor_type = type;

  if (PyType_Ready(type) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyType_Ready)."));
    return;
  }

  Py_INCREF(type);
1216 1217
  if (PyModule_AddObject(
          m.ptr(), "StringTensor", reinterpret_cast<PyObject*>(type)) < 0) {
J
Jack Zhou 已提交
1218 1219 1220 1221 1222 1223 1224 1225
    Py_DECREF(type);
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEagerStringTensor(PyModule_AddObject)."));
    return;
  }
}

1226 1227
}  // namespace pybind
}  // namespace paddle