heterxpu_trainer.cc 21.4 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18 19 20 21 22 23
#include <cstdlib>
#include <ctime>
#include <string>
#include <vector>
#include "io/fs.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
T
Thunderbrook 已提交
24
#include "paddle/fluid/framework/fleet/heter_wrapper.h"
25
#include "paddle/fluid/framework/trainer.h"
T
Thunderbrook 已提交
26 27 28
#if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_XPU) && \
    (defined PADDLE_WITH_PSLIB)
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
29
#include "paddle/fluid/platform/cuda_device_guard.h"
T
Thunderbrook 已提交
30
#endif
T
Thunderbrook 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
namespace paddle {
namespace framework {

void HeterXpuTrainer::Initialize(const TrainerDesc& trainer_desc,
                                 Dataset* dataset) {
  srand((unsigned)time(NULL));
  param_ = trainer_desc.downpour_param();
  for (int i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }
  scale_datanorm_ = trainer_desc.scale_datanorm();
  int place_num = trainer_desc.worker_places_size();
  for (int i = 0; i < place_num; ++i) {
    int num = trainer_desc.worker_places(i);
T
Thunderbrook 已提交
50
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
51 52 53
    platform::CUDAPlace place = platform::CUDAPlace(num);
    platform::CUDADeviceGuard guard(place.device);
    cudaStream_t stream;
54
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamCreate(&stream));
T
Thunderbrook 已提交
55 56 57
    copy_streams_.push_back(stream);
    places_.push_back(place);
    cudaEvent_t event;
58
    PADDLE_ENFORCE_GPU_SUCCESS(
T
Thunderbrook 已提交
59 60
        cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
    events_.push_back(event);
T
Thunderbrook 已提交
61 62 63 64 65
#endif
#ifdef PADDLE_WITH_XPU
    platform::XPUPlace place = platform::XPUPlace(num);
    places_.push_back(place);
#endif
T
Thunderbrook 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  }
  // thread_num_ = trainer_desc.thread_num();
  // SetDataset(dataset);

  // dump_fields_path_ = trainer_desc.dump_fields_path();
  // dump_converter_ = trainer_desc.dump_converter();
  // need_dump_field_ = false;
  // if (trainer_desc.dump_fields_size() != 0 && dump_fields_path_ != "") {
  //   need_dump_field_ = true;
  // }
  // if (need_dump_field_) {
  //   auto &file_list = dataset->GetFileList();
  //   if (file_list.size() == 0) {
  //     need_dump_field_ = false;
  //   }
  // }
  // mpi_rank_ = trainer_desc.mpi_rank();
  // mpi_size_ = trainer_desc.mpi_size();
  // dump_file_num_ = trainer_desc.dump_file_num();
  // const std::vector<paddle::framework::DataFeed *> readers =
  //     dataset->GetReaders();
  // thread_num_ = readers.size();
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
  running_ = true;
  VLOG(3) << "going to initialize pull dense worker";
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
  VLOG(3) << "initialize pull dense worker";
  SetDebug(trainer_desc.debug());
  fleet_ptr_ = FleetWrapper::GetInstance();
  heter_ptr_ = HeterWrapper::GetInstance();
  RegisterServiceHandler();
  // for (int i = 0; i < trainer_desc.worker_places_size(); ++i) {
  //   int num = trainer_desc.worker_places(i);
  //   platform::CUDAPlace place = platform::CUDAPlace(num);
  //   platform::CUDADeviceGuard guard(place.device);
  //   cudaStream_t stream;
107
  //   PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamCreate(&stream));
T
Thunderbrook 已提交
108 109 110 111 112 113 114 115 116
  //   copy_streams_.push_back(stream);
  //   places_.push_back(place);
  // }
  trainer_desc_ = trainer_desc;
}

void HeterXpuTrainer::CreateThreadParam(const ProgramDesc& program, int num) {
  auto place = places_[num];
  Scope* scope = place_scopes_[num];
T
Thunderbrook 已提交
117
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
118 119 120 121
  auto stream = copy_streams_[num];
  auto event = events_[num];
  auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
  platform::CUDADeviceGuard guard(dev_id);
T
Thunderbrook 已提交
122 123 124 125 126 127
#endif

#ifdef PADDLE_WITH_XPU
  xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device);
#endif

T
Thunderbrook 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  auto& block = program.Block(0);
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto name = var->Name();
      Variable* root_var = root_scope_->FindVar(name);
      LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
      auto* ptr = scope->Var(name);
      InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
      LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();

#define HeterMemcpyFunc(cpp_type, proto_type)                           \
  do {                                                                  \
    if (root_tensor->type() == proto_type) {                            \
      HeterMemCpy<cpp_type>(thread_tensor, root_tensor, place, stream); \
    }                                                                   \
  } while (0)
T
Thunderbrook 已提交
144 145 146 147 148 149 150 151

#define HeterMemcpyXpuFunc(cpp_type, proto_type)                \
  do {                                                          \
    if (root_tensor->type() == proto_type) {                    \
      HeterMemCpy<cpp_type>(thread_tensor, root_tensor, place); \
    }                                                           \
  } while (0)
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
152
      _ForEachDataType_(HeterMemcpyFunc);
T
Thunderbrook 已提交
153 154 155 156
#endif
#ifdef PADDLE_WITH_XPU
      _ForEachDataType_(HeterMemcpyXpuFunc);
#endif
T
Thunderbrook 已提交
157 158
    }
  }
T
Thunderbrook 已提交
159
#ifdef PADDLE_WITH_CUDA
160
  PADDLE_ENFORCE_GPU_SUCCESS(cudaEventRecord(event, stream));
T
Thunderbrook 已提交
161
  cudaEventSynchronize(event);
T
Thunderbrook 已提交
162
#endif
T
Thunderbrook 已提交
163 164
}

T
Thunderbrook 已提交
165
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
template <typename T>
void HeterXpuTrainer::HeterMemCpy(LoDTensor* thread_tensor,
                                  LoDTensor* root_tensor,
                                  const paddle::platform::Place& thread_place,
                                  cudaStream_t stream) {
  T* thread_ptr =
      thread_tensor->mutable_data<T>(root_tensor->dims(), thread_place);
  T* root_ptr = root_tensor->data<T>();
  if (platform::is_cpu_place(root_tensor->place())) {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
                 platform::CPUPlace(), root_ptr,
                 sizeof(T) * root_tensor->numel(), stream);
  } else {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
                 BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()),
                 root_ptr, sizeof(T) * root_tensor->numel(), stream);
  }
}
T
Thunderbrook 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#endif

#ifdef PADDLE_WITH_XPU
template <typename T>
void HeterXpuTrainer::HeterMemCpy(LoDTensor* thread_tensor,
                                  LoDTensor* root_tensor,
                                  const paddle::platform::Place& thread_place) {
  T* thread_ptr =
      thread_tensor->mutable_data<T>(root_tensor->dims(), thread_place);
  T* root_ptr = root_tensor->data<T>();
  if (platform::is_cpu_place(root_tensor->place())) {
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, thread_place), thread_ptr,
                 platform::CPUPlace(), root_ptr,
                 sizeof(T) * root_tensor->numel());
  } else {
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, thread_place), thread_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, root_tensor->place()),
                 root_ptr, sizeof(T) * root_tensor->numel());
  }
}
#endif
T
Thunderbrook 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

void HeterXpuTrainer::DumpWork(int tid) {}

void HeterXpuTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                     const platform::Place& place) {
  CacheProgram(main_program);
  place_ = place;
  auto& profiler = paddle::ps::CostProfiler::instance();
  profiler.register_profiler("xpu_service_run_task");
  profiler.register_profiler("xpu_service_deserial");
  profiler.register_profiler("xpu_service_launch_kernel");
  profiler.register_profiler("xpu_service_wait");
}

void HeterXpuTrainer::InitOtherEnv(const ProgramDesc& main_program) {
  auto& block = main_program.Block(0);
  pull_dense_worker_->SetRootScope(root_scope_);
  pull_dense_worker_->CreatePinVar();
  for (size_t i = 0; i < places_.size(); ++i) {
    Scope* scope = &(root_scope_->NewScope());
    // for (auto &var : block.AllVars()) {
    //   if (var->Persistable()) {
    //     auto *ptr = scope->Var(var->Name());
    //     InitializeVariable(ptr, var->GetType());
    //   }
    // }
    place_scopes_.push_back(scope);
    CreateThreadParam(main_program, i);
    pull_dense_worker_->AddThreadScope(scope);
    pull_dense_worker_->AddPlace(places_[i]);
T
Thunderbrook 已提交
235
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
236
    pull_dense_worker_->AddStream(copy_streams_[i]);
T
Thunderbrook 已提交
237
#endif
T
Thunderbrook 已提交
238 239
  }
  pull_dense_worker_->Start();
T
Thunderbrook 已提交
240
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
241 242 243
  for (auto& stream : copy_streams_) {
    cudaStreamSynchronize(stream);
  }
T
Thunderbrook 已提交
244
#endif
T
Thunderbrook 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
  xpu_begin_op_index_ = xpu_end_op_index_ = -1;
  xpu_begin_op_index_ = trainer_desc_.xpu_start_idx();
  xpu_end_op_index_ = trainer_desc_.xpu_end_idx();
  VLOG(0) << "xpu begin: " << xpu_begin_op_index_
          << " xpu end: " << xpu_end_op_index_;
  // CHECK(xpu_begin_op_index_ == 0);
  // CHECK(xpu_end_op_index_ = ops_.size() - 1);
  //// init pool
  for (size_t i = 0; i < 6; ++i) {
    for (size_t j = 0; j < places_.size(); ++j) {
      int num = j;
      std::shared_ptr<HeterServiceContext> context =
          std::make_shared<HeterServiceContext>();
      context->place_num_ = num;
      auto place = places_[num];
      context->scope_ = &(place_scopes_[num]->NewScope());
      auto& block = program_.Block(0);
      for (auto& var : block.AllVars()) {
        if (!var->Persistable()) {
          auto* ptr = context->scope_->Var(var->Name());
          InitializeVariable(ptr, var->GetType());
        }
      }
      for (auto& v : dense_grad_names_) {
        for (auto& name : v.second) {
          auto* ptr = context->scope_->Var(name + "pin");
          InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        }
      }
      for (auto& op_desc : block.AllOps()) {
        std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
        OperatorBase* local_op_ptr = local_op.release();
        (context->ops_).push_back(local_op_ptr);
      }
T
Thunderbrook 已提交
287
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
288 289
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
      platform::CUDADeviceGuard guard(dev_id);
290
      PADDLE_ENFORCE_GPU_SUCCESS(
T
Thunderbrook 已提交
291
          cudaEventCreateWithFlags(&context->event_, cudaEventDisableTiming));
T
Thunderbrook 已提交
292
#endif
T
Thunderbrook 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
      object_pool_.Push(context);
    }
  }
  VLOG(3) << "init other env done.";
}

void HeterXpuTrainer::Run() {}

int HeterXpuTrainer::EndPass(const HeterRequest* request,
                             HeterResponse* response) {
  // int scope_num = object_pool_.Size();
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();

    for (size_t j = 0; j < place_scopes_.size(); j++) {
      Scope* cur_thread_scope = place_scopes_[j];
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
//      if (root_tensor->numel() != thread_tensor->numel()) {
//        continue;
//      }
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
T
Thunderbrook 已提交
336 337
      if (!platform::is_cpu_place(thread_tensor->place())) {
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
338 339 340 341 342
        auto dev_id =
            BOOST_GET_CONST(platform::CUDAPlace, thread_tensor->place()).device;
        platform::CUDADeviceGuard guard(dev_id);
        cudaMemset(thread_tensor->data<void>(), 0,
                   thread_tensor->numel() * SizeOfType(thread_tensor->type()));
T
Thunderbrook 已提交
343 344 345 346 347 348 349 350 351 352 353 354
#endif
#ifdef PADDLE_WITH_XPU
        auto place = thread_tensor->place();
        xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device);
        platform::DeviceContextPool& pool =
            platform::DeviceContextPool::Instance();
        platform::DeviceContext* dev_ctx = pool.Get(place);
        const platform::XPUDeviceContext* xpu_ctx =
            reinterpret_cast<const platform::XPUDeviceContext*>(dev_ctx);
        xpu::memset(xpu_ctx->x_context(), thread_tensor->data<void>(), 0,
                    thread_tensor->numel() * SizeOfType(thread_tensor->type()));
#endif
T
Thunderbrook 已提交
355 356 357 358 359 360 361 362
      } else {
        memset(thread_tensor->data<void>(), 0,
               thread_tensor->numel() * SizeOfType(thread_tensor->type()));
      }
    }
    auto* merge_var = response->add_vars();
    heter_ptr_->SerializeToReq(need_merge_var_names_[i], root_scope_,
                               merge_var);
T
Thunderbrook 已提交
363 364
    if (!platform::is_cpu_place(root_tensor->place())) {
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
365 366 367 368 369
      auto dev_id =
          BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()).device;
      platform::CUDADeviceGuard guard(dev_id);
      cudaMemset(root_tensor->data<void>(), 0,
                 root_tensor->numel() * SizeOfType(root_tensor->type()));
T
Thunderbrook 已提交
370 371 372 373 374 375 376 377 378 379 380 381
#endif
#ifdef PADDLE_WITH_XPU
      auto place = root_tensor->place();
      xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device);
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      platform::DeviceContext* dev_ctx = pool.Get(place);
      const platform::XPUDeviceContext* xpu_ctx =
          reinterpret_cast<const platform::XPUDeviceContext*>(dev_ctx);
      xpu::memset(xpu_ctx->x_context(), root_tensor->data<void>(), 0,
                  root_tensor->numel() * SizeOfType(root_tensor->type()));
#endif
T
Thunderbrook 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    } else {
      memset(root_tensor->data<void>(), 0,
             root_tensor->numel() * SizeOfType(root_tensor->type()));
    }
  }
  return 0;
}

template <typename T>
void HeterXpuTrainer::MergeToRootScope(LoDTensor* root_tensor,
                                       LoDTensor* tensor) {
  LoDTensor tmp_root;
  TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
  TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
  TensorCopy(tmp_root, root_tensor->place(), root_tensor);
}

int HeterXpuTrainer::StopService(const HeterRequest* request,
                                 HeterResponse* response) {
  std::unique_lock<std::mutex> lock(mutex_);
  running_ = false;
  cond_.notify_one();
  return 0;
}

int HeterXpuTrainer::RunTask(const HeterRequest* request,
                             HeterResponse* response) {
  auto timer = std::make_shared<paddle::ps::CostTimer>("xpu_service_run_task");
  std::shared_ptr<HeterServiceContext> context = object_pool_.Get();

  if (!context->scope_) {
T
Thunderbrook 已提交
419
    int num = rand() % places_.size();
T
Thunderbrook 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    context->place_num_ = num;
    auto place = places_[num];
    context->scope_ = &(place_scopes_[num]->NewScope());
    auto& block = program_.Block(0);
    for (auto& var : block.AllVars()) {
      if (!var->Persistable()) {
        auto* ptr = context->scope_->Var(var->Name());
        InitializeVariable(ptr, var->GetType());
      }
    }
    for (auto& v : dense_grad_names_) {
      for (auto& name : v.second) {
        auto* ptr = context->scope_->Var(name + "pin");
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
      }
    }
    for (auto& op_desc : block.AllOps()) {
      std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
      OperatorBase* local_op_ptr = local_op.release();
      (context->ops_).push_back(local_op_ptr);
    }
T
Thunderbrook 已提交
441
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
442 443
    auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
    platform::CUDADeviceGuard guard(dev_id);
444
    PADDLE_ENFORCE_GPU_SUCCESS(
T
Thunderbrook 已提交
445
        cudaEventCreateWithFlags(&context->event_, cudaEventDisableTiming));
T
Thunderbrook 已提交
446
#endif
T
Thunderbrook 已提交
447 448 449 450 451 452 453 454
  }

  context->Reset();
  auto place = places_[context->place_num_];
  {
    auto deserial_timer =
        std::make_shared<paddle::ps::CostTimer>("xpu_service_deserial");
    for (int i = 0; i < request->vars_size(); ++i) {
T
Thunderbrook 已提交
455
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
456 457
      heter_ptr_->DeSerializeToTensor(context->scope_, request->vars(i), place,
                                      copy_streams_[context->place_num_]);
T
Thunderbrook 已提交
458 459 460 461
#endif
#ifdef PADDLE_WITH_XPU
      heter_ptr_->DeSerializeToTensor(context->scope_, request->vars(i), place);
#endif
T
Thunderbrook 已提交
462
    }
T
Thunderbrook 已提交
463
#ifdef PADDLE_WITH_CUDA
464
    PADDLE_ENFORCE_GPU_SUCCESS(
T
Thunderbrook 已提交
465 466 467 468 469
        cudaEventRecord(context->event_, copy_streams_[context->place_num_]));
    while (cudaEventQuery(context->event_) != cudaSuccess) {
      VLOG(3) << "wait for kernel";
      bthread_yield();
    }
T
Thunderbrook 已提交
470
#endif
T
Thunderbrook 已提交
471 472 473 474 475 476 477 478 479 480
  }

  {
    auto launch_timer =
        std::make_shared<paddle::ps::CostTimer>("xpu_service_launch_kernel");
    for (int i = xpu_begin_op_index_; i <= xpu_end_op_index_; ++i) {
      auto& op = (context->ops_)[i];
      op->Run(*(context->scope_), place);
    }
  }
T
Thunderbrook 已提交
481
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
482 483
  auto* dev_ctx = static_cast<platform::CUDADeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
484
  PADDLE_ENFORCE_GPU_SUCCESS(
T
Thunderbrook 已提交
485 486 487 488 489 490 491 492 493 494
      cudaEventRecord(context->event_, dev_ctx->stream()));
  // cudaEventSynchronize(context->event_);
  {
    auto wait_timer =
        std::make_shared<paddle::ps::CostTimer>("xpu_service_wait");
    while (cudaEventQuery(context->event_) != cudaSuccess) {
      VLOG(3) << "wait for kernel";
      bthread_yield();
    }
  }
T
Thunderbrook 已提交
495 496 497 498
#endif
#ifdef PADDLE_WITH_XPU
  xpu_wait();
#endif
T
Thunderbrook 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

  for (int i = 0; i < trainer_desc_.xpu_send_list_size(); ++i) {
    const std::string& varname = trainer_desc_.xpu_send_list(i);
    // CHECK(varname == "concat_1.tmp_0@GRAD");
    auto* res_var = response->add_vars();
    heter_ptr_->SerializeToReq(varname, context->scope_, res_var);
  }

  // std::string varname = "concat_1.tmp_0@GRAD";
  //
  // auto* res_var = response->add_vars();
  // heter_ptr_->SerializeToReq(varname, context->scope_, res_var);
  for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
       ++i) {
    uint64_t tid =
        static_cast<uint64_t>(param_.program_config(0).push_dense_table_id(i));
T
Thunderbrook 已提交
515
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
516 517 518 519 520
    fleet_ptr_->PushDenseVarsAsync(
        *(context->scope_), tid, dense_grad_names_[tid],
        &(context->push_dense_status_), scale_datanorm_, request->cur_batch(),
        places_[context->place_num_], copy_streams_[context->place_num_],
        context->event_);
T
Thunderbrook 已提交
521 522 523 524 525 526 527
#endif
#ifdef PADDLE_WITH_XPU
    fleet_ptr_->PushDenseVarsAsync(
        *(context->scope_), tid, dense_grad_names_[tid],
        &(context->push_dense_status_), scale_datanorm_, request->cur_batch(),
        places_[context->place_num_]);
#endif
T
Thunderbrook 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
  }
  for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
       ++i) {
    uint64_t tid =
        static_cast<uint64_t>(param_.program_config(0).push_dense_table_id(i));
    pull_dense_worker_->IncreaseThreadVersion(0, tid);
  }
  VLOG(3) << "push dense gradient done.";
  context->scope_->DropKids();
  object_pool_.Push(context);
  VLOG(0) << "pool size " << object_pool_.Size();
  return 0;
}

void HeterXpuTrainer::RegisterServiceHandler() {
  heter_ptr_->RegisterServiceHandler(
      0, [this](const HeterRequest* request, HeterResponse* response) -> int {
        return this->RunTask(request, response);
      });
  heter_ptr_->RegisterServiceHandler(
      1, [this](const HeterRequest* request, HeterResponse* response) -> int {
        return this->EndPass(request, response);
      });
  heter_ptr_->RegisterServiceHandler(
      2, [this](const HeterRequest* request, HeterResponse* response) -> int {
        return this->StopService(request, response);
      });
}

Scope* HeterXpuTrainer::GetWorkerScope(int thread_id) { return nullptr; }

void HeterXpuTrainer::Finalize() {
  // for (auto &th : threads_) {
  //   th.join();
  // }
  std::unique_lock<std::mutex> lock(mutex_);
  cond_.wait(lock, [this] { return !running_; });
  sleep(3);
  pull_dense_worker_->Stop();
  root_scope_->DropKids();
}
}  // namespace framework
}  // namespace paddle
#endif