test_concat_op.py 19.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16 17

import gradient_checker
18
import numpy as np
19 20 21 22 23 24 25
from decorator_helper import prog_scope

import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid import Program, core, program_guard
from paddle.fluid.framework import _test_eager_guard
26 27 28
from paddle.fluid.tests.unittests.op_test import (
    OpTest,
    convert_float_to_uint16,
29
    skip_check_grad_ci,
30
)
31 32


33
class TestConcatOp(OpTest):
34
    def setUp(self):
35
        self.op_type = "concat"
36
        self.python_api = paddle.concat
37
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
38 39 40
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
41 42 43 44 45 46
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
47
        self.outputs = {
48 49 50
            'Out': np.concatenate(
                (self.x0, self.x1, self.x2), axis=self.actual_axis
            )
C
chengduoZH 已提交
51
        }
52

53
    def get_dtype(self):
54
        return "float64"
55

56
    def test_check_output(self):
57 58 59 60
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)
        else:
61
            self.check_output(check_eager=True)
62

63
    def test_check_grad(self):
64 65 66 67 68 69
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(place, ['x0'], 'Out')
            self.check_grad_with_place(place, ['x1'], 'Out')
            self.check_grad_with_place(place, ['x2'], 'Out')
        else:
70 71 72
            self.check_grad(['x0'], 'Out', check_eager=True)
            self.check_grad(['x1'], 'Out', check_eager=True)
            self.check_grad(['x2'], 'Out', check_eager=True)
C
chengduoZH 已提交
73 74

    def init_test_data(self):
75 76 77 78 79 80 81 82 83 84 85
        if self.dtype == np.uint16:
            x0 = np.random.random((5, 1, 4, 5)).astype(np.float32)
            self.x0 = convert_float_to_uint16(x0)
            x1 = np.random.random((5, 2, 4, 5)).astype(np.float32)
            self.x1 = convert_float_to_uint16(x1)
            x2 = np.random.random((5, 3, 4, 5)).astype(np.float32)
            self.x2 = convert_float_to_uint16(x2)
        else:
            self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
            self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
            self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
86 87 88
        self.axis = 1


89
class TestConcatOp2(TestConcatOp):
C
chengduoZH 已提交
90
    def init_test_data(self):
91 92 93
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
94
        self.axis = 1
95

96

97
@skip_check_grad_ci(
98 99
    reason="The function 'check_grad' for large inputs is too slow."
)
100 101
class TestConcatOp3(TestConcatOp):
    def init_test_data(self):
102 103 104
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
105 106 107 108 109 110
        self.axis = 1

    def test_check_grad(self):
        pass


111
@skip_check_grad_ci(
112
    reason="This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
113
)
114 115
class TestConcatOp4(TestConcatOp):
    def init_test_data(self):
116 117 118
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
119 120 121 122 123 124
        self.axis = 0

    def test_check_grad(self):
        pass


125 126
class TestConcatOp5(TestConcatOp):
    def init_test_data(self):
Z
zhupengyang 已提交
127 128 129
        self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
130 131 132
        self.axis = -3


133 134 135 136
class TestConcatOp6(TestConcatOp):
    def setUp(self):
        self.op_type = "concat"
        self.dtype = self.get_dtype()
137
        self.python_api = paddle.concat
138 139 140 141
        self.init_test_data()
        self.lod = [[20, 80]]
        self.out_lod = [[20, 80, 20, 80, 20, 80]]
        self.inputs = {
142 143 144 145 146
            'X': [
                ('x0', (self.x0, self.lod)),
                ('x1', (self.x1, self.lod)),
                ('x2', (self.x2, self.lod)),
            ]
147 148 149 150 151 152 153 154 155 156 157
        }
        self.attrs = {'axis': self.axis}
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis
        out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
        self.outputs = {'Out': (out, self.out_lod)}

    def test_check_output(self):
158
        self.check_output(check_eager=True)
159 160

    def test_check_grad(self):
161 162 163
        self.check_grad(['x0'], 'Out', check_eager=True)
        self.check_grad(['x1'], 'Out', check_eager=True)
        self.check_grad(['x2'], 'Out', check_eager=True)
164 165 166 167 168 169 170 171

    def init_test_data(self):
        self.x0 = np.random.random([100]).astype(self.dtype)
        self.x1 = np.random.random([100]).astype(self.dtype)
        self.x2 = np.random.random([100]).astype(self.dtype)
        self.axis = 0


172 173 174 175
def create_test_AxisTensor(parent):
    class TestConcatAxisTensor(parent):
        def setUp(self):
            self.op_type = "concat"
176
            self.python_api = paddle.concat
177 178 179 180 181
            self.dtype = self.get_dtype()
            self.init_test_data()

            self.inputs = {
                'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
182
                'AxisTensor': np.array([self.axis]).astype("int32"),
183 184 185 186 187
            }
            self.attrs = {}

            if self.axis < 0:
                self.actual_axis = self.axis + len(self.x0.shape)
188 189 190
                self.actual_axis = (
                    self.actual_axis if self.actual_axis > 0 else 0
                )
191 192 193 194
            else:
                self.actual_axis = self.axis

            self.outputs = {
195 196 197
                'Out': np.concatenate(
                    (self.x0, self.x1, self.x2), axis=self.actual_axis
                )
198 199 200 201 202 203 204 205 206 207 208 209
            }

    cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
    TestConcatAxisTensor.__name__ = cls_name
    globals()[cls_name] = TestConcatAxisTensor


create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)
210
create_test_AxisTensor(TestConcatOp6)
211

212
# ----------------Concat Fp16----------------
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229


def create_test_fp16(parent):
    class TestConcatFp16(parent):
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)
230
create_test_fp16(TestConcatOp6)
231

232

233
# ----------------Concat Bf16----------------
234
def create_test_bf16(parent):
235 236 237
    @unittest.skipIf(
        not paddle.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
238 239 240 241 242 243 244 245 246 247 248 249
    class TestConcatBf16(parent):
        def get_dtype(self):
            return np.uint16

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestConcatBf16.__name__ = cls_name
    globals()[cls_name] = TestConcatBf16


create_test_bf16(TestConcatOp)


250
class TestConcatOpError(unittest.TestCase):
251 252
    def test_errors(self):
        with program_guard(Program(), Program()):
253 254 255 256
            # The input type of concat_op should be list.
            x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
            fluid.layers.concat(x1)
            # The item in input must be Variable.
257 258 259 260 261 262
            x2 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
263
            self.assertRaises(TypeError, fluid.layers.concat, [x2])
264
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
265 266 267 268 269
            x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
            x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
270
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
271
            fluid.layers.concat([x6, x7])
272

273 274 275 276 277 278
            # The type of axis in concat_op should be int or Variable.
            def test_axis_type():
                fluid.layers.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

279 280 281 282 283
            def test_input_same_dtype():
                fluid.layers.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

284

285
class TestConcatAPI(unittest.TestCase):
286
    def test_fluid_api(self):
287
        paddle.enable_static()
288 289 290 291 292 293 294
        x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
        fluid.layers.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
295 296
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
297
        out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
298 299
        out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
        out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
300 301

        exe = fluid.Executor(place=fluid.CPUPlace())
302 303 304 305 306
        [res_1, res_2, res_3] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_2, "x_2": input_2, "x_3": input_3},
            fetch_list=[out_1, out_2, out_3],
        )
307 308
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
309
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
310

311
    def test_api(self):
312
        paddle.enable_static()
313 314 315
        x_1 = paddle.fluid.data(
            shape=[None, 1, 4, 5], dtype='int32', name='x_1'
        )
316 317 318 319 320 321
        paddle.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
322 323 324
        positive_1_int32 = paddle.fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = paddle.fluid.layers.fill_constant([1], "int64", 1)
        negative_int64 = paddle.fluid.layers.fill_constant([1], "int64", -3)
325 326 327 328 329
        out_1 = paddle.concat(x=[x_2, x_3], axis=1)
        out_2 = paddle.concat(x=[x_2, x_3], axis=positive_1_int32)
        out_3 = paddle.concat(x=[x_2, x_3], axis=positive_1_int64)
        out_4 = paddle.concat(x=[x_2, x_3], axis=negative_int64)

330
        exe = paddle.static.Executor(place=paddle.CPUPlace())
331 332 333 334 335
        [res_1, res_2, res_3, res_4] = exe.run(
            paddle.static.default_main_program(),
            feed={"x_1": input_2, "x_2": input_2, "x_3": input_3},
            fetch_list=[out_1, out_2, out_3, out_4],
        )
336 337 338 339 340 341 342 343 344
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_4, np.concatenate((input_2, input_3), axis=1))

    def test_imperative(self):
        in1 = np.array([[1, 2, 3], [4, 5, 6]])
        in2 = np.array([[11, 12, 13], [14, 15, 16]])
        in3 = np.array([[21, 22], [23, 24]])
345
        paddle.disable_static()
Z
Zhou Wei 已提交
346 347 348
        x1 = paddle.to_tensor(in1)
        x2 = paddle.to_tensor(in2)
        x3 = paddle.to_tensor(in3)
349 350 351 352 353
        out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
        out2 = paddle.concat(x=[x1, x2], axis=0)
        np_out1 = np.concatenate([in1, in2, in3], axis=-1)
        np_out2 = np.concatenate([in1, in2], axis=0)
        paddle.enable_static()
354 355 356
        self.assertEqual((out1.numpy() == np_out1).all(), True)
        self.assertEqual((out2.numpy() == np_out2).all(), True)

357 358 359 360 361 362
    def test_eager(self):
        with _test_eager_guard():
            self.test_api()
            self.test_fluid_api()
            self.test_imperative()

363 364 365
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The item in input must be Variable.
366 367 368 369 370 371
            x2 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
372 373
            self.assertRaises(TypeError, paddle.concat, [x2])
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
374 375
            x4 = paddle.fluid.data(shape=[4], dtype='uint8', name='x4')
            x5 = paddle.fluid.data(shape=[4], dtype='uint8', name='x5')
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])

            # The type of axis in concat_op should be int or Variable.
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')

            def test_axis_type():
                paddle.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

            def test_input_same_dtype():
                paddle.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

393

394 395 396 397 398 399 400
class TestConcatAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test concat api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
401
        self.python = paddle.concat
402 403 404
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
405 406 407 408 409
        self.place = (
            fluid.CUDAPlace(0)
            if fluid.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
410

411 412 413 414 415 416
    def set_program(self, use_fluid_api):
        paddle.enable_static()
        if use_fluid_api:
            self.program = fluid.Program()
            with fluid.program_guard(self.program):
                input = fluid.layers.assign(self.x)
417
                tensor_array = paddle.tensor.create_array(dtype='float32')
418 419 420
                zero = fluid.layers.fill_constant(
                    shape=[1], value=0, dtype="int64"
                )
421 422 423 424 425 426 427 428 429

                for i in range(self.iter_num):
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = fluid.layers.concat(tensor_array, axis=self.axis)
        else:
            self.program = paddle.static.Program()
            with paddle.static.program_guard(self.program):
                input = paddle.assign(self.x)
430
                tensor_array = paddle.tensor.create_array(
431 432 433
                    dtype='float32'
                )  # Api create_array is not supported in paddle 2.0 yet.
                zero = paddle.zeros(shape=[1], dtype="int64")
434

435 436 437 438 439 440 441 442
                for i in range(self.iter_num):
                    # Api array_write is not supported in paddle 2.0 yet.
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = paddle.concat(tensor_array, axis=self.axis)

    def test_fluid_api(self):
        self._run_static_mode(use_fluid_api=True)
443

444 445
    def test_paddle_api(self):
        self._run_static_mode(use_fluid_api=False)
446

447 448
    def _run_static_mode(self, use_fluid_api):
        self.set_program(use_fluid_api)
449 450 451
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
452
        np.testing.assert_array_equal(
453 454
            res[0], np.concatenate([self.x] * self.iter_num, axis=self.axis)
        )
455 456


457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
class TestConcatDoubleGradCheck(unittest.TestCase):
    def concat_wrapper(self, x):
        return paddle.concat(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [2, 3], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [2, 3], False, dtype)
        data2.persistable = True
        out = paddle.concat([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
474 475 476 477 478 479 480
        gradient_checker.double_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
481 482
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(
483 484
            self.concat_wrapper,
            [data1, data2],
485 486
            out,
            x_init=[data1_arr, data2_arr],
487 488
            place=place,
        )
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConcatTripleGradCheck(unittest.TestCase):
    def concat_wrapper(self, x):
        return paddle.concat(x, 1)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [2, 3, 4], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [2, 3, 4], False, dtype)
        data2.persistable = True
        out = paddle.concat([data1, data2], 1)
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
516 517 518 519 520 521 522
        gradient_checker.double_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
523 524
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(
525 526
            self.concat_wrapper,
            [data1, data2],
527 528
            out,
            x_init=[data1_arr, data2_arr],
529 530
            place=place,
        )
531 532 533 534 535 536 537 538 539 540

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


541 542
if __name__ == '__main__':
    unittest.main()