utils.py 50.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import atexit
16
import builtins
17
import copy
18
import functools
19
import importlib.util
20
import inspect
21
import os
22
import shutil
23
import sys
24
import tempfile
25
import textwrap
26
import types
27 28 29 30
import warnings
from importlib.machinery import SourceFileLoader

import astor
31
import numpy as np
32

33
import paddle
34
from paddle import fluid  # noqa: F401
35
from paddle.fluid import core, unique_name
36
from paddle.fluid.data_feeder import convert_dtype
37
from paddle.fluid.layer_helper import LayerHelper
38
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager
39
from paddle.utils import gast
40

41
from .ast_utils import ast_to_source_code, modify_function_code
42 43 44 45 46 47 48 49 50 51 52 53
from .static_analysis import StaticAnalysisVisitor
from .utils_helper import DYGRAPH_MODULE_PREFIX  # noqa: F401
from .utils_helper import DYGRAPH_TO_STATIC_MODULE_PREFIX  # noqa: F401
from .utils_helper import PADDLE_MODULE_PREFIX  # noqa: F401
from .utils_helper import NodeVarType  # noqa: F401
from .utils_helper import _is_api_in_module_helper  # noqa: F401
from .utils_helper import index_in_list  # noqa: F401
from .utils_helper import is_api_in_module  # noqa: F401
from .utils_helper import is_dygraph_api  # noqa: F401
from .utils_helper import is_numpy_api  # noqa: F401;
from .utils_helper import is_paddle_api  # noqa: F401

54 55
__all__ = []

56 57
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
58 59
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
60
ALREADY_D2S = '__already_d2s'
61
ARGS_NAME = '__args'
62 63
# NOTE(liym27): Please use `getattr(ast_node, ORIGI_INFO)` instead of . operation to get the original information of ast node.
ORIGI_INFO = "Original information of source code for ast node."
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
DEL_TEMP_DIR = True  # A flag to avoid atexit.register more than once
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
FOR_ITER_TARGET_PREFIX = '__for_loop_iter_target'
FOR_ITER_ITERATOR_PREFIX = '__for_loop_iter_iterator'
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

RE_PYNAME = '[a-zA-Z0-9_]+'
RE_PYMODULE = r'[a-zA-Z0-9_]+\.'

# Assign not support float64, use float32 value as magic number.
RETURN_NO_VALUE_VAR_NAME = "__no_value_return_var"
RETURN_NO_VALUE_MAGIC_NUM = 1.77113e27

TRUE_FUNC_PREFIX = 'true_fn'
FALSE_FUNC_PREFIX = 'false_fn'

WHILE_CONDITION_PREFIX = 'while_condition'
WHILE_BODY_PREFIX = 'while_body'
FOR_CONDITION_PREFIX = 'for_loop_condition'
FOR_BODY_PREFIX = 'for_loop_body'

90 91 92
GRAD_PREFIX = 'grad/'
GRAD_SUFFIX = '@GRAD'

93 94 95 96 97 98 99
NO_SHAPE_VAR_TYPE = [
    core.VarDesc.VarType.READER,
    core.VarDesc.VarType.STEP_SCOPES,
    core.VarDesc.VarType.FEED_MINIBATCH,
    core.VarDesc.VarType.FETCH_LIST,
]

100 101 102

class BaseNodeVisitor(gast.NodeVisitor):
    """
103
    Implement customized NodeVisitor inherited from gast.NodeVisitor.
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


122 123 124 125 126 127 128 129 130 131 132
dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}


133 134 135 136 137 138 139
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

140
     Note:
141 142 143 144 145 146 147 148 149 150
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
151
           size. For example, it is useful to set changeable batch size as "None"
152 153 154 155 156 157 158 159 160 161 162 163
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
164
    for i in range(len(shape)):
165 166 167
        if shape[i] is None:
            shape[i] = -1

168 169 170 171 172 173 174 175 176 177
    return helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        stop_gradient=True,
        lod_level=lod_level,
        is_data=True,
        need_check_feed=False,
    )
178

179

180
def create_undefined_variable():
181 182 183
    var = data_layer_not_check(
        unique_name.generate("undefined_var"), [1], "float64"
    )
184
    var.stop_gradient = False
185 186 187 188
    # the variable is created in block(0), we append assign in block(0) either.
    helper = LayerHelper('create_undefined_variable', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
189
    paddle.assign(RETURN_NO_VALUE_MAGIC_NUM, var)
190
    helper.main_program.current_block_idx = saved_block_ids
191
    return var
192 193


194 195 196 197 198 199
class UndefinedVar:
    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
200 201
            "local variable '{}' should be created before using it."
        )
202 203


204 205 206 207 208
class Dygraph2StaticException(Exception):
    def __init__(self, message):
        super().__init__(message)


209 210 211 212 213 214 215
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


216 217 218 219
def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
220
    fullargspec = inspect.getfullargspec(function)
221 222 223 224 225 226 227 228 229
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
230
        default_kwarg_names = arg_names[-len(default_values) :]
231 232 233 234 235
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
236 237 238 239
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
240
    fullargspec = inspect.getfullargspec(function)
W
WeiXin 已提交
241 242 243 244
    varargs = fullargspec.varargs
    return varargs


245 246 247 248 249 250 251 252
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

253
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
254
    """
255
    if isinstance(x, (tuple, list, set)):
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

273

274 275 276
# NOTE(Aurelius84): Consider the following paddle inner API as common case to
# apply @to_static code transformation as usual. Because they contains
# user-defined layer, like paddle.distributed.auto_parallel.helper.ProxyLayer.
277
AS_NOT_INNER_FUNC_LIST = {"paddle.nn.layer.container.Sequential"}
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299


def as_not_paddle_func(path):
    """
    Append API or class as ignored case for is_paddle_func, and they
    will be retured False while calling is_paddle_func(func).
    """
    global INNER_FUNC_WHITE_LIST
    AS_NOT_INNER_FUNC_LIST.add(path)


def is_paddle_func(func, ignore_white_list=True):
    """
    Return True if function is defined in Paddle module.
    Skip to check APIs in white list if specifying ignore_white_list as True.
    """

    def in_white_list(module, func_name):
        if func_name is None:
            return False
        return (module.__name__ + '.' + func_name) in AS_NOT_INNER_FUNC_LIST

300 301 302 303
    try:
        if isinstance(func, functools.partial):
            func = func.func

304
        func_name = getattr(func, '__name__', None)
305 306
        if inspect.ismethod(func):
            func_name = func.__self__.__class__.__name__
307
            func = func.__func__
308 309
        elif hasattr(func, '__class__'):  # for nn.Sequential
            func_name = func.__class__.__name__
310 311

        m = inspect.getmodule(func)
312 313 314
        flag = m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
        if ignore_white_list:
            flag = flag and not in_white_list(m, func_name)
315

316
        return flag
317 318
    except Exception:
        return False
319 320


321 322
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
323
    func_src = astor.to_source(gast.gast_to_ast(node.func))
324

325
    full_args = eval(f"inspect.getfullargspec({func_src})")
326 327 328 329 330 331 332 333 334 335
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
336 337
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
338 339
            "to static graph at present.".format(dygraph_class)
        )
340 341 342 343 344 345 346 347 348 349


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
350 351 352 353
            gast.keyword(
                arg="num_flatten_dims", value=gast.Constant(value=-1, kind=None)
            )
        )
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

372 373 374 375 376 377 378 379 380 381 382
    node.func = gast.Attribute(
        attr=static_api,
        ctx=gast.Load(),
        value=gast.Attribute(
            attr='layers',
            ctx=gast.Load(),
            value=gast.Name(
                ctx=gast.Load(), id='fluid', annotation=None, type_comment=None
            ),
        ),
    )
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

403
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
404

405
    if method_name == "__init__" or eval(
406
        f"issubclass({class_src}, paddle.nn.Layer)"
407
    ):
408
        full_args = eval(f"inspect.getfullargspec({class_src}.{method_name})")
409 410 411 412 413 414 415 416 417 418 419
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
420 421 422


def create_api_shape_node(tensor_shape_node):
423 424 425
    assert isinstance(
        tensor_shape_node, (gast.Name, gast.Attribute, gast.Subscript)
    )
426 427 428

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
429
            func=gast.parse('paddle.shape').body[0].value,
430
            args=[tensor_shape_node],
431 432
            keywords=[],
        )
433
        return api_shape_node
434 435 436

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
437
            func=gast.parse('paddle.shape').body[0].value,
438
            args=[tensor_shape_node.value],
439 440
            keywords=[],
        )
441 442 443 444 445 446
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
447 448


449
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
450
    return gast.parse(
451
        f'{name} = paddle.full({str(shape)}, "{str(value)}", {dtype})'
452
    )
453 454 455 456


def get_attribute_full_name(node):
    assert isinstance(
457 458
        node, gast.Attribute
    ), "Input non-Attribute node to get attribute full name"
459 460 461
    return astor.to_source(gast.gast_to_ast(node)).strip()


462
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
463
    """
464 465 466 467 468 469 470
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
471
    """
472
    if isinstance(name_ids, str):
473 474
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
475
        raise TypeError(
476 477 478
            'name_ids must be list or tuple or set, but received %s'
            % type(type(name_ids))
        )
479 480 481

    def create_node_for_name(name):
        if '.' not in name:
482 483 484
            return gast.Name(
                id=name, ctx=ctx, annotation=None, type_comment=None
            )
485 486 487
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
488
    if len(gast_names) == 1 and not gen_tuple_if_single:
489 490 491 492 493 494 495 496 497 498 499 500 501
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
502 503
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
504 505
    else:
        nodes.append(gast.Return(value=None))
506 507 508 509 510 511 512 513
    func_def_node = gast.FunctionDef(
        name=name,
        args=input_args,
        body=nodes,
        decorator_list=[],
        returns=None,
        type_comment=None,
    )
514 515 516
    return func_def_node


517 518 519 520 521 522 523 524 525
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


526 527 528 529
def get_temp_dir():
    """
    Return @to_static temp directory.
    """
530
    dir_name = f"paddle/to_static_tmp/{os.getpid()}"
531 532 533 534 535 536 537 538 539 540 541
    temp_dir = os.path.join(os.path.expanduser('~/.cache'), dir_name)
    is_windows = sys.platform.startswith('win')
    if is_windows:
        temp_dir = os.path.normpath(temp_dir)

    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    return temp_dir


542
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
543 544
    """
    Transform modified AST of decorated function into python callable object.
545 546
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
547
    """
548

549 550 551 552 553 554 555 556 557 558 559 560
    def remove_if_exit(dir_path):
        if os.path.exists(dir_path):
            shutil.rmtree(dir_path)

    def func_prefix(func):
        pre_fix = func.__name__
        if hasattr(func, '__self__'):
            try:
                pre_fix = func.__self__.__class__.__name__ + '_' + func.__name__
            except:
                pass
        return pre_fix
561

562
    source = ast_to_source_code(ast_root)
563
    source = _inject_import_statements() + source
564
    temp_dir = get_temp_dir()
565 566 567 568 569 570 571 572
    f = tempfile.NamedTemporaryFile(
        mode='w',
        prefix=func_prefix(dyfunc),
        suffix='.py',
        delete=False,
        dir=temp_dir,
        encoding='utf-8',
    )
573 574 575 576
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

577 578 579 580 581
    global DEL_TEMP_DIR
    if delete_on_exit and DEL_TEMP_DIR:
        # Clear temporary files in TEMP_DIR while exitting Python process
        atexit.register(remove_if_exit, dir_path=temp_dir)
        DEL_TEMP_DIR = False
582

583
    func_name = dyfunc.__name__
584 585 586 587
    loader = SourceFileLoader(module_name, f.name)
    spec = importlib.util.spec_from_loader(loader.name, loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
W
WeiXin 已提交
588 589 590
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
591
        callable_func = module.__i_m_p_l__
W
WeiXin 已提交
592 593 594 595
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
596
        raise ValueError(
597 598 599
            'Function: %s doesn\'t exist in the Module transformed from AST.'
            % func_name
        )
600 601 602 603 604 605 606 607
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


608 609
def _inject_import_statements():
    import_statements = [
610 611 612 613 614 615 616 617
        "import paddle",
        "from paddle import Tensor",
        "import paddle.fluid as fluid",
        "import paddle.jit.dy2static as _jst",
        "from typing import *",
        "import numpy as np",
        "import warnings",
        "warnings.filterwarnings('ignore', category=DeprecationWarning)",
618 619 620 621
    ]
    return '\n'.join(import_statements) + '\n'


622 623 624 625 626
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
627

628
    for k, v in src_globals.items():
629 630 631
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
632 633


634 635 636 637
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
638 639
    if isinstance(function, functools.partial):
        function = function.func
640 641
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
642 643 644 645
            "The type of 'function' should be a function or method, but received {}.".format(
                type(function).__name__
            )
        )
646 647 648 649 650 651 652 653 654 655 656 657 658 659
    # return modified function source code if there is 'register_hook', otherwise return None
    source_code = modify_function_code(function)

    if source_code is None:
        source_code_list, _ = inspect.getsourcelines(function)
        # Replace comments with blank lines so that error messages are not misplaced
        source_code_list = [
            line if not line.lstrip().startswith('#') else '\n'
            for line in source_code_list
        ]
        source_code = ''.join(source_code_list)

        if dedent:
            source_code = textwrap.dedent(source_code)
660 661 662 663

    return source_code


L
liym27 已提交
664 665 666 667
def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
668 669 670 671 672 673 674 675 676 677 678
    is_compare_node = isinstance(
        node,
        (
            gast.Compare,
            gast.BoolOp,
            gast.UnaryOp,
            gast.For,
            gast.If,
            gast.While,
        ),
    )
L
liym27 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
694 695 696
            if (isinstance(child, gast.Constant) and child.value is None) or (
                isinstance(child, gast.Name) and child.id == 'None'
            ):
L
liym27 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
714
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
715
        6. calls `range` function in `for` statement and the argument of range is Tensor.
716 717
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

731 732 733
    def __init__(
        self, ast_node, static_analysis_visitor=None, node_var_type_map=None
    ):
L
liym27 已提交
734 735 736
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
737 738
            ast_node
        )
L
liym27 已提交
739 740 741 742
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
743 744
        self.node_to_wrapper_map = (
            self.static_analysis_visitor.get_node_to_wrapper_map()
L
liym27 已提交
745 746 747 748 749 750 751 752
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
753 754 755 756 757 758 759 760
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
761 762 763 764 765 766 767 768 769
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
770 771 772
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
773 774 775 776
                if (
                    node.iter.func.id == "range"
                    or node.iter.func.id == "enumerate"
                ):
777 778 779 780 781 782 783 784 785 786
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
787 788
            else:
                return
789 790 791
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
792
        else:
L
liym27 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
831
            self.visit(child)
L
liym27 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
877
            if name_id and isinstance(name_id, str):
L
liym27 已提交
878
                var_type = self.node_var_type_map.get(name_id, None)
879
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
880 881
                    return True
        # if not found, look up the node_to_wrapper_map by node.
882
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
883
        if wrapper_node is not None:
884
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
885 886 887 888 889 890
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
891 892


893 894 895 896 897 898 899 900 901 902
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
903
    while _is_wrapped(unwrapped_f):
904 905 906
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
907 908


C
Chen Weihang 已提交
909
def input_specs_compatible(src_input_specs, desired_input_specs):
910 911 912 913
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
914 915 916 917
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
918 919
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
920 921
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
922
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
923 924 925 926
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
927 928 929
        for (src_spec, desired_spec) in zip(
            src_input_specs, desired_input_specs
        ):
930
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
931 932
                desired_spec, paddle.static.InputSpec
            ):
933 934 935 936
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
937 938
                    return False

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
966 967

    return True
968

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

990

991 992
class NameScope:
    def __init__(self):
993
        """
994 995
        A NameScope is a object which manager all the variable names.
        only FunctionDef and Controlflow node will have a namescope property.
996

997
        type can be "function" and "controlflow"
998

999
        we don't analyze the read only variable because they don't affect the analysis.
1000 1001 1002 1003 1004 1005
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
1006
        self.created = set()  # useful for control flow compatibility
1007
        # only valid in control_flow nodes
1008 1009
        # may be remove later.
        self.push_pop_vars = set()  # we call push and pop in the vars
1010 1011 1012 1013 1014

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
1015 1016
        """vars existing in current scope.
        they must not contain qualified names.
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

1028
    def variadic_length_vars(self):
1029
        """
1030
        At present, we do not support global append, such as
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        import numpy as np
        a = []
        def func():
            a.append() # global names `a`, we will raise a warning.
            p.append(a, 1) # global names `np`, we will raise a warning.
        """
        non_global_push_pop_names = []
        for var in self.push_pop_vars:
            if self._is_simple_name(var) and self.is_global_var(var):
                warnings.warn(
                    f"Find variable `{var}` defined in global scope"
                    f" and call `{var}.append() or {var}.pop()`"
                    f", which will be ignored and never be transfered into"
1045 1046
                    f" tensor array."
                )
1047 1048 1049
            else:
                non_global_push_pop_names.append(var)
        return set(non_global_push_pop_names)
1050

1051 1052
    def control_flow_vars(self):
        valid_names = self.w_vars
1053
        tmp = (self.father.global_vars & valid_names,)
1054 1055
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

1056
    def _is_simple_name(self, name):
1057 1058
        if '.' in name or '[' in name:
            return False
1059 1060 1061
        return True

    def is_global_var(self, name):
1062
        """
1063
        Return whether the name is a var created in global scope.
1064
        Search from bottom to top. If it is not created or modified,
1065 1066 1067 1068
        it means global vars; otherwise, it means local vars.
        Only valid after FunctionNameLivenessAnalysis visitor.
        """
        assert self._is_simple_name(
1069 1070
            name
        ), "is_global_var accept a simple name, but get `{name}`."
1071 1072
        ancestor = self
        while ancestor is not None:
1073 1074 1075 1076
            if name in ancestor.globals:
                return True
            if name in (ancestor.nonlocals | ancestor.w_vars):
                return False
1077 1078 1079 1080 1081
            ancestor = ancestor.father
        return True

    def is_local_var(self, name):
        return not self.is_global_var(name)
1082 1083 1084 1085 1086 1087

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars
1088
        self.push_pop_vars |= name_scope.push_pop_vars
1089 1090 1091


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    """analyze the liveness of a function.

    every variables stored in this scope will be collected,
    in addition with global/nonlocal information and
    push_pop information.

    1. global variable is stored in node.var_globals.
    2. nonlocal variable is stored in node.var_nonlocals.
    3. arguments is stored in node.var_args.
    4. if a variable's push and pop attribute is called,
       it will be collected in push_pop_vars. They are
       used for transformation to tensor_array.
       NOTE: push_pop_vars **may not** in w_vars.
       a.push(0) don't modify the variable a, but the content
       of a.

    For example:

    def func(*args, **kargs):
        a = 12
        global i,j
        nonlocal x,y
        print(a)
        i = k
        b = []
        c = [1,2,3]
        for m in range(10):
            q = 12
            b.push(1)
            c.pop()

    After this visitor we have:
    # node is the FunctionDef node with name: "func"
    node.pd_scope = NameScope(
        globals = ['i', 'j'],
        nonlocals = ['x', 'y'],
        args = ['args', 'kargs'],
        wr_vars = ['a', 'i', 'q', 'm', 'c', 'b']
        push_pop_vars = ['b', 'c']
    )
1132 1133 1134 1135 1136 1137 1138 1139
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
1140
        node.pd_scope = NameScope()
1141 1142 1143

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
1144
            node.pd_scope = NameScope()
1145 1146 1147 1148 1149 1150
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
1151 1152
        if len(self.scope_node_stack) == 1:
            return None
1153 1154 1155
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
1156 1157
        if len(self.scope_node_stack) == 1:
            return None
1158 1159 1160 1161
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

1162
    def visit_ListComp(self, node):
1163 1164 1165
        """[ i for i in range(10) ]
        In this case, `i` will not created in FunctionScope.
        We don't collect `i` by not calling generic_visit.
1166 1167 1168 1169
        """
        pass

    def visit_DictComp(self, node):
1170
        """the same as ListComp."""
1171 1172
        pass

1173 1174 1175 1176 1177 1178 1179 1180 1181
    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):
        def pre_func():
            self._current_name_scope().args |= set(
1182 1183
                self._get_argument_names(node)
            )
1184 1185

        def post_func():
1186 1187
            """NOTE: why we need merge w_vars and push_pop_vars here ?
            because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
1188 1189
            """
            control_flow_function_def = [
1190 1191 1192 1193 1194 1195
                WHILE_BODY_PREFIX,
                WHILE_BODY_PREFIX,
                FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX,
                TRUE_FUNC_PREFIX,
                FALSE_FUNC_PREFIX,
1196 1197 1198 1199
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
1200 1201
                    if node.name.startswith(prefix):
                        return True
1202 1203 1204
                return False

            if self._father_name_scope() and is_control_flow_def_node():
1205 1206 1207 1208 1209 1210
                self._father_name_scope().w_vars |= (
                    self._current_name_scope().w_vars
                )
                self._father_name_scope().push_pop_vars |= (
                    self._current_name_scope().push_pop_vars
                )
1211 1212 1213 1214

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
1215 1216
        """scope node main visit logic.
        pre_func and post_func is callbacks
1217 1218 1219
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
1220
        self._current_name_scope().set_father(self._nearest_function_scope())
1221 1222
        if pre_func:
            pre_func()
1223
        self.generic_visit(node)
1224 1225
        if post_func:
            post_func()
1226 1227 1228 1229 1230
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):
        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
1231
            self._nearest_function_scope().merge_from(
1232 1233 1234 1235 1236 1237
                self._current_name_scope()
            )
            self._current_name_scope().created = (
                self._nearest_function_scope().existed_vars()
                - node.before_created
            )
1238
            # gather created vars into father and used in CreateUndefinedVarTransform
1239 1240 1241
            self._nearest_function_scope().created |= (
                self._current_name_scope().created
            )
1242 1243

        def pre_func():
1244
            node.before_created = self._nearest_function_scope().existed_vars()
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

1270 1271 1272 1273 1274 1275 1276 1277 1278
    def visit_Subscript(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            while isinstance(node.value, gast.Subscript):
                node = node.value
            if isinstance(node.value, gast.Name):
                self._current_name_scope().w_vars.add(node.value.id)

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
    def visit_Call(self, node):
        self.generic_visit(node)
        if not isinstance(node.func, gast.Attribute):
            return
        variadic_length_method = ['append', 'pop']
        if node.func.attr not in variadic_length_method:
            return
        # we don't treat push and pop as a write operator. such as a[i]=10 is not modify a.
        name = ast_to_source_code(node.func.value).strip()
        self._current_name_scope().push_pop_vars.add(name)

1290
    def _get_argument_names(self, node):
1291 1292 1293
        """get all arguments name in the functiondef node.
        this node is local to the function and shouldn't
        be created.
1294 1295
        """
        assert isinstance(
1296 1297
            node, gast.FunctionDef
        ), "Input node is not function define node"
1298
        names = list(node.args.args)
1299 1300 1301 1302 1303 1304
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
1318 1319 1320
        """.format(
            func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX)
        )
1321 1322 1323
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1324
    node = create_nonlocal_stmt_nodes(names)
1325 1326
    if not names:
        return empty_node()
1327
    if node == []:
1328 1329
        nonlocal_vars = "\n"
    else:
1330
        nonlocal_vars = ast_to_source_code(node[0])
1331 1332
    template = """
    def {func_name}():
1333
        {nonlocal_vars}
1334
        return {vars},
1335 1336 1337
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1338
        nonlocal_vars=nonlocal_vars,
1339 1340
        vars=",".join(names),
    )
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
1357 1358 1359
        """.format(
            func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX), args=ARGS_NAME
        )
1360 1361 1362
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1363
    node = create_nonlocal_stmt_nodes(names)
1364 1365
    if not names:
        return empty_node()
1366
    if node == []:
1367 1368
        nonlocal_vars = "\n"
    else:
1369
        nonlocal_vars = ast_to_source_code(node[0])
1370 1371
    template = """
    def {func_name}({args}):
1372
        {nonlocal_vars}
1373
        {vars}, = {args}
1374 1375 1376 1377
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1378
        nonlocal_vars=nonlocal_vars,
1379 1380
        vars=",".join(names),
    )
1381 1382 1383
    return gast.parse(textwrap.dedent(func_def)).body[0]


1384
def create_nonlocal_stmt_nodes(names):
1385 1386 1387
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
1388
    mapped = list(filter(lambda n: '[' not in n, mapped))
1389
    names = sorted(
1390 1391
        mapped, key=mapped.index
    )  # to keep the order, we can't use set() to unique
1392 1393
    if not names:
        return []
1394
    func_code = "nonlocal {}".format(','.join(names))
1395
    return [gast.parse(func_code).body[0]]
1396 1397 1398


class GetterSetterHelper:
1399 1400 1401 1402
    """we have two classes of names in setter and getter function:
    w_vars(loop_vars) + push_pop_vars
    To simplify the setter logic in convert_while and convert_cond,
    we extract the helper class here.
1403 1404 1405
    """

    def __init__(self, getter_func, setter_func, *name_lists):
1406 1407
        name_lists = ([] if x is None else x for x in name_lists)
        name_sets = (set(x) for x in name_lists)
1408 1409 1410
        self._union = list(
            functools.reduce(lambda x, y: x | y, name_sets, set())
        )
1411 1412 1413 1414 1415 1416 1417 1418 1419
        self._union.sort()
        self.getter = getter_func
        self.setter = setter_func
        self.name2id = {name: idx for idx, name in enumerate(self._union)}

    def union(self):
        return self._union

    def get(self, names):
1420 1421
        if names is None:
            names = []
1422
        vars = self.getter()
1423
        if vars is None:
1424
            return ()
1425
        for n in names:
1426 1427 1428 1429 1430
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1431
        return tuple(vars[self.name2id[n]] for n in names)
1432 1433

    def set(self, names, values):
1434 1435 1436 1437
        if names is None:
            names = []
        if values is None:
            values = []
1438
        vars = self.getter()
1439 1440
        if vars is None:
            return
1441
        for n in names:
1442 1443 1444 1445 1446
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1447
        vars = list(vars)
1448
        indices = [self.name2id[n] for n in names]
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
        for i, v in zip(indices, values):
            vars[i] = v
        self.setter(vars)


def create_name_str(name_ids):
    """
    Return "('x', 'y')" for [x, y]
    """
    if not name_ids:
        return 'None'

1461
    names_str = ["'%s'" % (name.replace("'", "\\'")) for name in name_ids]
1462
    return "(%s, )" % ','.join(names_str)
1463 1464 1465 1466 1467 1468 1469


def _param_grad_names(program_desc, params):
    """
    Parse PARAM@GARD name from original train and infer program.
    """
    names = []
1470
    # NOTE: `names` and `params` must be in the same order so that
1471 1472
    # the param grad name can be set correctly in the run_program.
    for param in params:
1473 1474 1475
        candidate = []
        for var in program_desc.block(0).all_vars():
            var_name = var.name()
1476 1477 1478 1479 1480 1481 1482
            if param.name not in var_name:
                continue
            suf_count = var_name.count(GRAD_SUFFIX)
            if suf_count > 0:
                suffix = param.name + GRAD_SUFFIX * suf_count
                pre_count = var_name.count(GRAD_PREFIX)
                if GRAD_PREFIX * pre_count + suffix == var_name:
1483 1484
                    candidate.append(var_name)

1485
        if candidate:
1486 1487 1488 1489 1490 1491 1492 1493
            names.append(
                max(
                    candidate,
                    key=lambda name: name.count(GRAD_PREFIX)
                    if GRAD_PREFIX in name
                    else name.count(GRAD_SUFFIX),
                )
            )
1494
        else:
1495
            names.append(param.name + GRAD_SUFFIX)
1496 1497 1498 1499 1500 1501 1502 1503 1504
    return names


def _out_grad_names(program_desc, fwd_end_op_index, out_size):
    """
    Parse Out@GARD name from original train and infer program.
    """
    names = []
    for i in range(
1505 1506
        fwd_end_op_index,
        min(fwd_end_op_index + out_size, program_desc.block(0).op_size()),
1507 1508
    ):
        op = program_desc.block(0).op(i)
1509 1510 1511 1512 1513 1514
        # If prim forward op, fill_any_like will be decomposite as fill_constant.
        if core._is_fwd_prim_enabled():
            target = ('fill_any_like', 'fill_constant')
        else:
            target = 'fill_any_like'
        if op.type() in target:
1515 1516 1517
            var_name = op.output('Out')[0]
            names.append(var_name)
    return names
1518 1519


1520 1521 1522 1523
def prim_or_cinn_is_enabled(build_strategy, backend):
    if backend == 'CINN':
        return True

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    if build_strategy is not None and build_strategy.build_cinn_pass:
        return True

    if core._is_bwd_prim_enabled() or core._is_fwd_prim_enabled():
        return True

    env_flags = [
        'FLAGS_prim_forward',
        'FLAGS_prim_backward',
        'FLAGS_prim_all',
        'FLAGS_use_cinn',
    ]
    for flag in env_flags:
        value = os.getenv(flag)
        if value is None:
            continue
        elif value.lower() in ['true', '1']:
            return True
    return False
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558


def is_builtin(func, name=None):
    """predict whether a function is a builtin function with name={name}.
    if name == None, then any builtin function will return True
    """

    def name_judge():
        return name is None or func.__name__ == name

    if isinstance(func, types.BuiltinFunctionType) and name_judge():
        return True
    elif func in builtins.__dict__.values() and name_judge():
        return True
    else:
        return False
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573


@signature_safe_contextmanager
def backend_guard(backend):
    core.check_and_set_prim_all_enabled()
    orign_fwd = core._is_fwd_prim_enabled()
    orign_bwd = core._is_bwd_prim_enabled()

    if backend == 'CINN':
        core._set_prim_all_enabled(True)
    try:
        yield
    finally:
        core._set_prim_forward_enabled(orign_fwd)
        core._set_prim_backward_enabled(orign_bwd)