conv_grad_kernel.cu 27.2 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/eigen.h"
H
hong 已提交
16
#include "paddle/phi/backends/gpu/gpu_context.h"
17
#include "paddle/phi/core/dense_tensor.h"
H
hong 已提交
18
#include "paddle/phi/core/kernel_registry.h"
19
#include "paddle/phi/kernels/conv_grad_kernel.h"
H
hong 已提交
20 21 22 23 24 25 26 27 28
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
#include "paddle/fluid/operators/conv_cudnn_helper.h"
#endif

#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/profiler.h"
29 30
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
H
hong 已提交
31 32
#include "paddle/phi/kernels/cpu/conv_util.h"
#include "paddle/phi/kernels/funcs/batch_norm_utils.h"
33
#include "paddle/phi/kernels/funcs/padding.h"
H
hong 已提交
34 35 36 37 38 39 40 41
#include "paddle/phi/kernels/impl/conv_cudnn_impl.h"

namespace phi {

template <typename T, typename Context>
void ConvCudnnGradKernel(const Context& ctx,
                         const DenseTensor& input,
                         const DenseTensor& filter,
H
hong 已提交
42
                         const DenseTensor& output_grad,
H
hong 已提交
43 44 45 46 47 48 49 50 51 52 53 54
                         const std::vector<int>& strides_t,
                         const std::vector<int>& paddings_t,
                         const std::string& padding_algorithm,
                         int groups,
                         const std::vector<int>& dilations_t,
                         const std::string& data_format,
                         bool use_addto,
                         int workspace_size_MB,
                         bool exhaustive_search_t,
                         DenseTensor* input_grad,
                         DenseTensor* filter_grad) {
  if (input_grad) {
H
hong 已提交
55
    ctx.template Alloc<T>(input_grad);
H
hong 已提交
56 57
  }
  if (filter_grad) {
H
hong 已提交
58
    ctx.template Alloc<T>(filter_grad);
H
hong 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  }

  std::vector<int> dilations = dilations_t;
  std::vector<int> strides = strides_t;
  std::vector<int> paddings = paddings_t;

  bool exhaustive_search = FLAGS_cudnn_exhaustive_search || exhaustive_search_t;
  bool deterministic = FLAGS_cudnn_deterministic;
  auto exhaustive_deterministic = exhaustive_search && deterministic;
  PADDLE_ENFORCE_EQ(exhaustive_deterministic,
                    false,
                    phi::errors::InvalidArgument(
                        "Cann't set exhaustive_search True and "
                        "FLAGS_cudnn_deterministic True at same time."));

  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

  auto dtype = paddle::platform::CudnnDataType<T>::type;

#ifdef PADDLE_WITH_HIP
  // HIP MIOPEN ONLY SUPPORT NCHW format
  auto compute_format = paddle::platform::DataLayout::kNCHW;
#else
  const bool compute_in_nhwc = dtype == CUDNN_DATA_HALF && IsVoltaOrLater(ctx);
  auto compute_format = compute_in_nhwc && channel_last
                            ? paddle::platform::DataLayout::kNHWC
                            : paddle::platform::DataLayout::kNCHW;
#endif
  VLOG(3) << "Compute ConvGradOp with cuDNN:"
          << " data_format=" << data_format << " compute_format="
          << (compute_format == paddle::platform::DataLayout::kNHWC ? "NHWC"
                                                                    : "NCHW");

  // transform Tensor
  DenseTensor transformed_input_channel(input.type());
  DenseTensor transformed_output_grad_channel(output_grad.type());
  DenseTensor transformed_input_grad_channel(input.type());
  DenseTensor transformed_filter_channel(filter.type());
  DenseTensor transformed_filter_grad_channel(filter.type());

  if (channel_last && compute_format == paddle::platform::DataLayout::kNCHW) {
    VLOG(3) << "Transform input, output_grad, input_grad and tensor from "
               "NHWC to NCHW.";
    ResizeToChannelFirst<Context, T>(ctx, &input, &transformed_input_channel);
    TransToChannelFirst<Context, T>(ctx, &input, &transformed_input_channel);

    ResizeToChannelFirst<Context, T>(
        ctx, &output_grad, &transformed_output_grad_channel);
    TransToChannelFirst<Context, T>(
        ctx, &output_grad, &transformed_output_grad_channel);

    if (input_grad) {
      ResizeToChannelFirst<Context, T>(
          ctx, input_grad, &transformed_input_grad_channel);
      // NOTE(zhiqiu): If inplace_addto strategy is enabled, we need to copy
      // the data of input_grad to transformed_input_grad_channel.
      if (use_addto) {
        TransToChannelFirst<Context, T>(
            ctx, input_grad, &transformed_input_grad_channel);
      }
    }
  } else {
    transformed_input_channel.ShareDataWith(input);
    transformed_output_grad_channel.ShareDataWith(output_grad);
    if (input_grad) {
      transformed_input_grad_channel.ShareDataWith(*input_grad);
    }
  }

  if (compute_format == paddle::platform::DataLayout::kNHWC) {
    VLOG(3) << "Transform filter and filter_grad tensor from NCHW to NHWC.";
    ResizeToChannelLast<Context, T>(ctx, &filter, &transformed_filter_channel);
    TransToChannelLast<Context, T>(ctx, &filter, &transformed_filter_channel);

    if (filter_grad) {
      ResizeToChannelLast<Context, T>(
          ctx, filter_grad, &transformed_filter_grad_channel);
    }
  } else {
    transformed_filter_channel.ShareDataWith(filter);
    if (filter_grad) {
      transformed_filter_grad_channel.ShareDataWith(*filter_grad);
    }
  }

  //  update paddings
  auto in_dims = transformed_input_channel.dims();
  auto filter_dims = transformed_filter_channel.dims();
  DDim in_data_dims;
  DDim filter_data_dims;
  if (compute_format == paddle::platform::DataLayout::kNCHW) {
    in_data_dims = slice_ddim(in_dims, 2, in_dims.size());
    filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  } else {
    in_data_dims = slice_ddim(in_dims, 1, in_dims.size() - 1);
    filter_data_dims = slice_ddim(filter_dims, 1, filter_dims.size() - 1);
  }
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  // cuDNN only supports padding the same amount on every dimension.
  // So we create a new padded input tensor.
  int data_dim = strides.size();  // 2d or 3d
  bool is_sys_pad = funcs::IsSymmetricPadding(paddings, data_dim);
  Tensor transformed_input(input.type());
  Tensor transformed_input_grad(input.type());
  std::vector<int> padding_common(data_dim, 0);
  std::vector<int> input_pad(transformed_input_channel.dims().size() * 2, 0);

  if (!is_sys_pad) {
    // get pad
    std::vector<int> padding_diff(data_dim);
    std::vector<int> new_input_shape_vec(data_dim + 2);
    new_input_shape_vec[0] = transformed_input_channel.dims()[0];
    if (compute_format == paddle::platform::DataLayout::kNCHW) {
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];
    } else {
      new_input_shape_vec[data_dim + 1] =
          transformed_input_channel.dims()[data_dim + 1];
    }

    for (size_t i = 0; i < data_dim; ++i) {
      padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
      padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
      if (compute_format == paddle::platform::DataLayout::kNCHW) {
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
      } else {
        new_input_shape_vec[i + 1] =
            transformed_input_channel.dims()[i + 1] + padding_diff[i];
      }
      if (compute_format == paddle::platform::DataLayout::kNCHW) {
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      } else {
        input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
    }
    DDim new_input_shape(make_ddim(new_input_shape_vec));
    transformed_input.Resize(new_input_shape);
H
hong 已提交
201
    ctx.template Alloc<T>(&transformed_input);
H
hong 已提交
202 203 204 205

    transformed_input_grad.Resize(new_input_shape);

    if (input_grad) {
H
hong 已提交
206
      ctx.template Alloc<T>(&transformed_input_grad);
H
hong 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    }
    // pad for input
    const int rank = transformed_input_channel.dims().size();
    T pad_value(0.0);
    switch (rank) {
      case 4: {
        funcs::PadFunction<Context, T, 4>(ctx,
                                          input_pad,
                                          transformed_input_channel,
                                          pad_value,
                                          &transformed_input);
      } break;
      case 5: {
        funcs::PadFunction<Context, T, 5>(ctx,
                                          input_pad,
                                          transformed_input_channel,
                                          pad_value,
                                          &transformed_input);
      } break;
      default:
        PADDLE_THROW(phi::errors::InvalidArgument(
            "ConvOp only support tensors with 4 or 5 dimensions."));
    }
  } else {
    transformed_input.ShareDataWith(transformed_input_channel);
    if (input_grad) {
      transformed_input_grad.ShareDataWith(transformed_input_grad_channel);
    }
    if (paddings.size() == data_dim) {
      for (size_t i = 0; i < data_dim; ++i) {
        padding_common[i] = paddings[i];
      }
    } else {
      for (size_t i = 0; i < data_dim; ++i) {
        padding_common[i] = paddings[2 * i];
      }
    }
  }

  const T* input_data = transformed_input.data<T>();
  const T* output_grad_data = transformed_output_grad_channel.data<T>();
  const T* filter_data = transformed_filter_channel.data<T>();
  T* filter_grad_data = nullptr;
  T* input_grad_data = nullptr;
  T* transformed_input_grad_data = nullptr;

  paddle::operators::ConvArgs args1{&transformed_input_grad,
                                    &transformed_filter_channel,
                                    &transformed_output_grad_channel,
                                    strides,
                                    padding_common,
                                    dilations,
                                    dtype};
  paddle::operators::ConvArgs args2{&transformed_input,
                                    &transformed_filter_grad_channel,
                                    &transformed_output_grad_channel,
                                    strides,
                                    padding_common,
                                    dilations,
                                    dtype};

  auto handle = ctx.cudnn_handle();
  // TODO(phlrain): replace paddle::platform::DataLaytout to phi::DataLayout
  paddle::platform::DataLayout layout =
      compute_format == paddle::platform::DataLayout::kNHWC
          ? paddle::platform::DataLayout::kNHWC
          : paddle::platform::DataLayout::kNCHW;
  if (transformed_input.dims().size() == 5) {
    layout = compute_format == paddle::platform::DataLayout::kNHWC
                 ? paddle::platform::DataLayout::kNDHWC
                 : paddle::platform::DataLayout::kNCDHW;
  }
  auto layout_tensor = paddle::platform::GetCudnnTensorFormat(layout);
  auto workspace_handle = ctx.cudnn_workspace_handle();

  int i_n, i_c, i_d, i_h, i_w;
  int o_n, o_c, o_d, o_h, o_w;
  if (compute_format == paddle::platform::DataLayout::kNHWC) {
    paddle::operators::GetNCDHW(transformed_input.dims(),
                                paddle::platform::DataLayout::kNHWC,
                                &i_n,
                                &i_c,
                                &i_d,
                                &i_h,
                                &i_w);
    paddle::operators::GetNCDHW(transformed_output_grad_channel.dims(),
                                paddle::platform::DataLayout::kNHWC,
                                &o_n,
                                &o_c,
                                &o_d,
                                &o_h,
                                &o_w);
  } else {
    paddle::operators::GetNCDHW(transformed_input.dims(),
                                paddle::platform::DataLayout::kNCHW,
                                &i_n,
                                &i_c,
                                &i_d,
                                &i_h,
                                &i_w);
    paddle::operators::GetNCDHW(transformed_output_grad_channel.dims(),
                                paddle::platform::DataLayout::kNCHW,
                                &o_n,
                                &o_c,
                                &o_d,
                                &o_h,
                                &o_w);
  }

  int group_offset_in = i_c / groups * i_h * i_w * i_d;
  int group_offset_out = o_c / groups * o_h * o_w * o_d;
  int group_offset_filter = transformed_filter_channel.numel() / groups;
319

H
hong 已提交
320 321
// ------------------- cudnn backward algorithm ---------------------
#ifdef PADDLE_WITH_HIP
322 323 324
  paddle::operators::SearchResult<miopenConvBwdDataAlgorithm_t> bwd_result;
  paddle::operators::SearchResult<miopenConvBwdWeightsAlgorithm_t>
      filter_result;
H
hong 已提交
325
#else
326 327 328
  paddle::operators::SearchResult<cudnnConvolutionBwdDataAlgo_t> bwd_result;
  paddle::operators::SearchResult<cudnnConvolutionBwdFilterAlgo_t>
      filter_result;
H
hong 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
#endif
  // input data workspace_size
  size_t workspace_size_d = 0;
  // weight workspace_size
  size_t workspace_size_w = 0;
  int iwo_groups = groups;
  int c_groups = 1;

#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
  iwo_groups = 1;
  c_groups = groups;
  groups = 1;
#endif

  if (input_grad) {
    // ------------------- cudnn descriptors ---------------------
    input_grad_data = input_grad->data<T>();
    transformed_input_grad_data = transformed_input_grad.data<T>();

    args1.handle = handle;
    args1.idesc.set(transformed_input_grad, layout_tensor);
    args1.wdesc.set(transformed_filter_channel, layout_tensor, iwo_groups);
    args1.odesc.set(transformed_output_grad_channel, layout_tensor);
    args1.cdesc.set(dtype,
                    padding_common,
                    strides,
                    dilations,
                    paddle::platform::AllowTF32Cudnn(),
                    c_groups);

#ifdef PADDLE_WITH_HIP
    using search1 =
        paddle::operators::SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
    workspace_size_d =
        std::max(workspace_size_d, search1::GetWorkspaceSize(args1));
364
    bwd_result.algo = search1::Find<T>(
H
hong 已提交
365 366 367 368
        args1, exhaustive_search, deterministic, workspace_size_d, ctx);
#else
    using search1 =
        paddle::operators::SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
369 370 371
    bwd_result = search1::Find<T>(args1, exhaustive_search, deterministic, ctx);
    workspace_size_d = std::max(
        workspace_size_d, search1::GetWorkspaceSize(args1, bwd_result.algo));
H
hong 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
#endif
  }

  if (filter_grad) {
    // ------------------- cudnn descriptors ---------------------
    filter_grad_data = transformed_filter_grad_channel.data<T>();
    args2.handle = handle;
    args2.idesc.set(transformed_input, layout_tensor);
    args2.wdesc.set(transformed_filter_grad_channel, layout_tensor, iwo_groups);
    args2.odesc.set(transformed_output_grad_channel, layout_tensor);
    args2.cdesc.set(dtype,
                    padding_common,
                    strides,
                    dilations,
                    paddle::platform::AllowTF32Cudnn(),
                    c_groups);
#ifdef PADDLE_WITH_HIP
    using search2 =
        paddle::operators::SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
    workspace_size_w =
        std::max(workspace_size_w, search2::GetWorkspaceSize(args2));
393
    filter_result.algo = search2::Find<T>(
H
hong 已提交
394 395 396 397
        args2, exhaustive_search, deterministic, workspace_size_w, ctx);
#else
    using search2 =
        paddle::operators::SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
398
    filter_result =
H
hong 已提交
399
        search2::Find<T>(args2, exhaustive_search, deterministic, ctx);
400 401 402 403
    VLOG(3) << "filter algo: " << filter_result.algo << ", time "
            << filter_result.time;
    workspace_size_w = std::max(
        workspace_size_w, search2::GetWorkspaceSize(args2, filter_result.algo));
H
hong 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
#endif
  }

  // ------------------- cudnn conv backward data ---------------------
  paddle::operators::ScalingParamType<T> alpha = 1.0f;
#ifdef PADDLE_WITH_HIP
  // MIOPEN ONLY support beta to be 0.0f
  paddle::operators::ScalingParamType<T> beta = 0.0f;
#else
  paddle::operators::ScalingParamType<T> beta = use_addto ? 1.0f : 0.0f;

#endif
  VLOG(4) << "Conv_grad: use_addto = " << use_addto;

  if (input_grad) {
// When beta is 0, it is unnecessary to reset input_grad.
// When beta is 1, the output cannot be reset since addt strategy used.
#ifdef PADDLE_WITH_HIP
    if (use_addto) {
      DenseTensor temp_tensor(transformed_input_grad.type());
      temp_tensor.Resize(transformed_input_grad.dims());
H
hong 已提交
425
      T* temp_tensor_data = ctx.template Alloc<T>(&temp_tensor);
H
hong 已提交
426 427 428 429 430 431 432 433 434 435 436
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::miopenConvolutionBackwardData(
                    handle,
                    &alpha,
                    args1.odesc.desc(),
                    output_grad_data,
                    args1.wdesc.desc(),
                    filter_data,
                    args1.cdesc.desc(),
437
                    bwd_result.algo,
H
hong 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
                    &beta,
                    args1.idesc.desc(),
                    temp_tensor_data,
                    cudnn_workspace_ptr,
                    workspace_size_d));
          },
          workspace_size_d);
      PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::miopenOpTensor(
          handle,
          miopenTensorOpAdd,
          &alpha,
          args1.idesc.desc(),
          transformed_input_grad_data,
          &alpha,
          args1.idesc.desc(),
          temp_tensor_data,
          &beta,
          args1.idesc.desc(),
          transformed_input_grad_data));
    } else {
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::miopenConvolutionBackwardData(
                    handle,
                    &alpha,
                    args1.odesc.desc(),
                    output_grad_data,
                    args1.wdesc.desc(),
                    filter_data,
                    args1.cdesc.desc(),
469
                    bwd_result.algo,
H
hong 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
                    &beta,
                    args1.idesc.desc(),
                    transformed_input_grad_data,
                    cudnn_workspace_ptr,
                    workspace_size_d));
          },
          workspace_size_d);
    }

#else
    for (int i = 0; i < groups; i++) {
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::cudnnConvolutionBackwardData(
                    handle,
                    &alpha,
                    args1.wdesc.desc(),
                    filter_data + i * group_offset_filter,
                    args1.odesc.desc(),
                    output_grad_data + i * group_offset_out,
                    args1.cdesc.desc(),
492
                    bwd_result.algo,
H
hong 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
                    cudnn_workspace_ptr,
                    workspace_size_d,
                    &beta,
                    args1.idesc.desc(),
                    transformed_input_grad_data + i * group_offset_in));
          },
          workspace_size_d);
    }
#endif
    if (!is_sys_pad) {
      std::vector<int> starts(transformed_input_channel.dims().size(), 0);
      std::vector<int> axes(transformed_input_channel.dims().size(), 0);

      for (size_t i = 0; i < transformed_input_channel.dims().size(); ++i) {
        starts[i] = input_pad[2 * i];
        axes[i] = i;
      }

H
hong 已提交
511
      ctx.template Alloc<T>(&transformed_input_grad_channel);
H
hong 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
      if (transformed_input_channel.dims().size() == 4) {
        paddle::operators::RemovePaddingSlice<Context, T, 4>(
            ctx,
            &transformed_input_grad,
            &transformed_input_grad_channel,
            starts,
            axes);
      } else {
        paddle::operators::RemovePaddingSlice<Context, T, 5>(
            ctx,
            &transformed_input_grad,
            &transformed_input_grad_channel,
            starts,
            axes);
      }
    }

    if (channel_last && compute_format == paddle::platform::DataLayout::kNCHW) {
      TransToChannelLast<Context, T>(
          ctx, &transformed_input_grad_channel, input_grad);
    }
  }

  // filter_grad do not use inplace addto.
  paddle::operators::ScalingParamType<T> beta_filter = 0.0f;
  // ------------------- cudnn conv backward filter ---------------------
  if (filter_grad) {
// Because beta is zero, it is unnecessary to reset filter_grad.
#ifdef PADDLE_WITH_HIP
    workspace_handle.RunFunc(
        [&](void* cudnn_workspace_ptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              paddle::platform::dynload::miopenConvolutionBackwardWeights(
                  handle,
                  &alpha,
                  args2.odesc.desc(),
                  output_grad_data,
                  args2.idesc.desc(),
                  input_data,
                  args2.cdesc.desc(),
552
                  filter_result.algo,
H
hong 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
                  &beta,
                  args2.wdesc.desc(),
                  filter_grad_data,
                  cudnn_workspace_ptr,
                  workspace_size_w));
        },
        workspace_size_w);
#else
    for (int i = 0; i < groups; i++) {
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::cudnnConvolutionBackwardFilter(
                    handle,
                    &alpha,
                    args2.idesc.desc(),
                    input_data + i * group_offset_in,
                    args2.odesc.desc(),
                    output_grad_data + i * group_offset_out,
                    args2.cdesc.desc(),
573
                    filter_result.algo,
H
hong 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
                    cudnn_workspace_ptr,
                    workspace_size_w,
                    &beta_filter,
                    args2.wdesc.desc(),
                    filter_grad_data + i * group_offset_filter));
          },
          workspace_size_w);
    }
#endif

    if (compute_format == paddle::platform::DataLayout::kNHWC) {
      TransToChannelFirst<Context, T>(
          ctx, &transformed_filter_grad_channel, filter_grad);
    }
  }
}

template <typename T, typename Context>
void Conv3DCudnnGradKernel(const Context& dev_ctx,
                           const DenseTensor& input,
                           const DenseTensor& filter,
H
hong 已提交
595
                           const DenseTensor& out_grad,
H
hong 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609
                           const std::vector<int>& strides,
                           const std::vector<int>& paddings,
                           const std::string& paddding_algorithm,
                           int groups,
                           const std::vector<int>& dilations,
                           const std::string& data_format,
                           bool use_addto,
                           int workspace_size_MB,
                           bool exhaustive_search,
                           DenseTensor* input_grad,
                           DenseTensor* filter_grad) {
  ConvCudnnGradKernel<T>(dev_ctx,
                         input,
                         filter,
H
hong 已提交
610
                         out_grad,
H
hong 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623
                         strides,
                         paddings,
                         paddding_algorithm,
                         groups,
                         dilations,
                         data_format,
                         use_addto,
                         workspace_size_MB,
                         exhaustive_search,
                         input_grad,
                         filter_grad);
}

H
hong 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637
template <typename T, typename Context>
void DepthwiseConvCudnnGradKernel(const Context& dev_ctx,
                                  const DenseTensor& input,
                                  const DenseTensor& filter,
                                  const DenseTensor& out_grad,
                                  const std::vector<int>& strides,
                                  const std::vector<int>& paddings,
                                  const std::string& paddding_algorithm,
                                  int groups,
                                  const std::vector<int>& dilations,
                                  const std::string& data_format,
                                  bool use_addto,
                                  int workspace_size_MB,
                                  bool exhaustive_search,
H
hong 已提交
638
                                  bool fuse_relu,
H
hong 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
                                  DenseTensor* input_grad,
                                  DenseTensor* filter_grad) {
  ConvCudnnGradKernel<T>(dev_ctx,
                         input,
                         filter,
                         out_grad,
                         strides,
                         paddings,
                         paddding_algorithm,
                         groups,
                         dilations,
                         data_format,
                         use_addto,
                         workspace_size_MB,
                         exhaustive_search,
                         input_grad,
                         filter_grad);
}

H
hong 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(conv2d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradKernel,
                   float,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(conv3d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnGradKernel,
                   float,
                   phi::dtype::float16) {}
H
hong 已提交
674 675 676 677 678 679 680

PD_REGISTER_KERNEL(depthwise_conv2d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::DepthwiseConvCudnnGradKernel,
                   float,
                   phi::dtype::float16) {}
H
hong 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
#else
#if CUDNN_VERSION_MIN(8, 1, 0)
PD_REGISTER_KERNEL(conv2d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(conv3d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#else
PD_REGISTER_KERNEL(conv2d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(conv3d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}

#endif

#endif