operator.h 24.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
30
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
34
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/scope.h"
36
#include "paddle/fluid/framework/selected_rows_utils.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/tensor.h"
38
#include "paddle/fluid/framework/unused_var_check.h"
39
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
40 41
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
42 43 44
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
45
#include "paddle/utils/flat_hash_map.h"
46

W
wanghuancoder 已提交
47 48 49 50 51 52 53 54 55
namespace paddle {
namespace framework {
class InferShapeContext;
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

56 57 58 59
namespace phi {
class KernelContext;
}

Q
Qiao Longfei 已提交
60 61
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
62 63 64
namespace paddle {
namespace framework {

65
/// If a variable is a empty variable, that name will be used.
66
constexpr char kEmptyVarName[] = "@EMPTY@";
67 68 69

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
70
constexpr char kTempVarName[] = "@TEMP@";
71 72

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
73 74
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
75
constexpr char kGradVarSuffix[] = "@GRAD";
76

M
minqiyang 已提交
77 78
constexpr size_t kGradVarSuffixSize = 5U;

79
/// Variables with this suffix are supposed to be filled up with zeros.
80
constexpr char kZeroVarSuffix[] = "@ZERO";
81

C
chengduo 已提交
82 83 84
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
85 86 87 88 89 90 91 92
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
93 94 95 96 97 98 99 100 101
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
102
// define some kernel priority
103
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
104 105
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

106
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
107 108 109 110 111
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
112 113
}

M
minqiyang 已提交
114
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
115
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
116 117 118 119 120
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
121 122
}

123
inline bool VarIsTensor(const Variable& var) {
124
  return var.IsType<LoDTensor>() || var.IsType<phi::SelectedRows>();
125 126
}

C
chengduo 已提交
127 128
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
129

130
class ExecutionContext;
W
wanghuancoder 已提交
131
class OperatorBase;
132

X
Xin Pan 已提交
133 134
class RuntimeContext {
 public:
X
Xin Pan 已提交
135 136
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
137

X
Xin Pan 已提交
138 139 140 141
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
142 143 144 145
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
146
/**
X
Xin Pan 已提交
147
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
148 149 150 151 152 153
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
154 155
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
156

Q
Qiao Longfei 已提交
157 158
  virtual ~OperatorBase() {}

159
  /// Executor will call this interface function to Run an op.
160 161
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
162

T
typhoonzero 已提交
163 164 165
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

166
  /// if scope is not null, also show dimensions of arguments
167
  virtual std::string DebugStringEx(const ScopeBase* scope) const;
168
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
169

170
  virtual bool SupportGPU() const { return false; }
B
Baibaifan 已提交
171
  virtual bool SupportNPU() const { return false; }
F
fwenguang 已提交
172
  virtual bool SupportMLU() const { return false; }
173

174 175
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
176
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
177 178
  template <typename T>
  inline const T& Attr(const std::string& name) const {
179 180 181
    PADDLE_ENFORCE_NE(
        attrs_.find(name), attrs_.end(),
        platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
182
    return BOOST_GET_CONST(T, attrs_.at(name));
183
  }
184 185 186 187 188 189 190 191
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
        HasAttr(name), true,
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
192
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
193

Y
Yu Yang 已提交
194 195
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
196

S
sneaxiy 已提交
197
  const OpInfo& Info() const {
198 199 200
    PADDLE_ENFORCE_NOT_NULL(
        info_, platform::errors::NotFound(
                   "OpInfo of operator (%s) is not found.", type_));
S
sneaxiy 已提交
201 202 203
    return *info_;
  }

204
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
205
  //! Get a input with argument's name described in `op_proto`
206
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
207
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
208
  const std::vector<std::string>& Inputs(const std::string& name) const;
209
  //! Get all inputs variable names
Q
qijun 已提交
210 211
  std::vector<std::string> InputVars() const;

212
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
213
  //! Get a output with argument's name described in `op_proto`
214
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
215 216
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
217
  const std::vector<std::string>& Outputs(const std::string& name) const;
218
  //! Get all outputs variable names
Y
Yu Yang 已提交
219
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
220

221
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
222

B
baojun-nervana 已提交
223
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
224 225
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
226

Z
Zhang Ting 已提交
227 228 229 230 231
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
232
 protected:
Q
Qiao Longfei 已提交
233
  std::string type_;
D
dongzhihong 已提交
234
  // NOTE: in case of OpGrad, inputs_ contains:
235
  // I (Inputs)
D
dongzhihong 已提交
236 237
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
238
  VariableNameMap inputs_;
Y
Yu Yang 已提交
239

D
dongzhihong 已提交
240 241
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
242
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
243
  AttributeMap attrs_;
S
sneaxiy 已提交
244 245 246 247

  // OpInfo
  const OpInfo* info_;

248 249
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
250 251 252 253

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
254 255
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
256 257
};

258
class ExecutionContext {
Y
Yan Chunwei 已提交
259
 public:
260
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
261
                   const platform::DeviceContext& device_context,
262 263
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
264
  virtual ~ExecutionContext() {}
265

H
hong 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
286 287 288

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
289
  template <typename T>
Y
Yu Yang 已提交
290
  inline const T& Attr(const std::string& name) const {
291
    return BOOST_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
292 293
  }

H
hong 已提交
294 295 296
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
297

H
hong 已提交
298
  virtual bool HasInput(const std::string& name) const;
299

300 301
  virtual bool HasInputs(const std::string& name) const;

H
hong 已提交
302
  virtual bool HasOutput(const std::string& name) const;
303

H
hong 已提交
304
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
305
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
306 307
  }

H
hong 已提交
308
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
309
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
310 311
  }

H
hong 已提交
312
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
313

H
hong 已提交
314
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
315

H
hong 已提交
316
  virtual const std::vector<Variable*> MultiInputVar(
317
      const std::string& name) const {
318 319
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
320 321 322 323
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
324
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
325 326
  }

H
hong 已提交
327
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
328 329 330 331 332 333 334
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

C
Chen Weihang 已提交
335 336
  virtual paddle::small_vector<const std::string*> InNameList() const {
    paddle::small_vector<const std::string*> vec_temp;
H
hong 已提交
337 338 339
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
340
      vec_temp.push_back(&input.first);
H
hong 已提交
341 342 343 344 345
    }

    return vec_temp;
  }

346 347
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
348
    auto* var = InputVar(name);
349
    return var == nullptr ? nullptr : &var->Get<T>();
350 351 352 353
  }

  template <typename T>
  T* Output(const std::string& name) const {
354
    auto var = OutputVar(name);
355
    return var == nullptr ? nullptr : var->GetMutable<T>();
356 357 358 359
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
360 361
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
362 363
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
364 365 366 367 368
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
369
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
370 371 372 373 374 375 376
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
377 378 379
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
380 381
      return {};
    }
H
hong 已提交
382

X
Xin Pan 已提交
383 384 385 386 387 388
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
389

X
Xin Pan 已提交
390 391 392
    return res;
  }

393
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
394

Q
QI JUN 已提交
395 396 397 398 399
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

400
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
401
    return device_context_;
Q
qijun 已提交
402
  }
Q
qijun 已提交
403

404
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
QI JUN 已提交
405
  const inline platform::CUDADeviceContext& cuda_device_context() const {
406 407 408
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
Q
QI JUN 已提交
409 410 411 412 413
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
414 415 416
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
417
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
418 419
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
420
    auto shared_allocation =
421
        std::shared_ptr<phi::Allocation>(allocation_ptr, deleter);
X
Xin Pan 已提交
422

423
    PADDLE_ENFORCE_GE(
424
        allocation_ptr->size(), phi::product(dim) * sizeof(T),
425 426 427
        platform::errors::PreconditionNotMet(
            "The data memory size(%d) is less than the tensor needed memory "
            "size(%d).",
428
            allocation_ptr->size(), phi::product(dim) * sizeof(T)));
X
Xin Pan 已提交
429

430
    paddle::framework::Tensor temp_tensor(framework::TransToPhiDataType(
431
        framework::ToDataType(std::type_index(typeid(T)))));
X
Xin Pan 已提交
432 433 434 435 436
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
437 438 439
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
440
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
441

442
 private:
443 444
  const OperatorBase& op_;
  const Scope& scope_;
445
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
446
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
447 448
};

449
// TODO(chenweihang): split impl based OpProto or Dygraph if needed
450
class ExecutionArgumentMappingContext : public phi::ArgumentMappingContext {
451 452 453 454 455
 public:
  explicit ExecutionArgumentMappingContext(const ExecutionContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
456
    return ctx_.HasInputs(name);
457 458 459 460 461 462
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

463 464 465 466
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

467 468 469
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.GetAttr(name);
    return GetAttrValue(attr);
470 471 472
  }

  size_t InputSize(const std::string& name) const override {
473
    return ctx_.MultiInputVar(name).size();
474 475 476
  }

  size_t OutputSize(const std::string& name) const override {
477
    return ctx_.MultiOutputVar(name).size();
478 479 480
  }

  bool IsDenseTensorInput(const std::string& name) const override {
481 482 483 484 485
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::DenseTensor>();
  }

  bool IsDenseTensorInputs(const std::string& name) const override {
486 487 488 489
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
490 491 492
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
493 494
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SelectedRows>();
495 496
  }

497
  bool IsDenseTensorVectorInput(const std::string& name) const override {
498 499 500 501
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<framework::LoDTensorArray>();
    });
502 503
  }

504
  bool IsDenseTensorOutput(const std::string& name) const override {
505 506 507 508
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
509 510 511
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
512 513 514 515
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
516 517
  }

518 519
  bool IsForInferShape() const override { return false; }

520 521 522 523
 private:
  const ExecutionContext& ctx_;
};

524 525 526 527 528 529 530 531
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
532
class OpKernelBase {
Q
qijun 已提交
533
 public:
Q
qijun 已提交
534
  /**
535
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
536 537
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
538
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
539 540
   */

541
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
542

Y
Yu Yang 已提交
543 544 545 546 547 548 549
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
550 551
};

Y
Yu Yang 已提交
552 553
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
554
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
555
  using OpKernelMap =
Y
yuyang18 已提交
556
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
557

Y
Yu Yang 已提交
558 559
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
560 561
      : OperatorBase(type, inputs, outputs, attrs) {}

C
chentianyu03 已提交
562
  static paddle::flat_hash_map<std::string /* op_type */, OpKernelMap>&
Y
Yu Yang 已提交
563
  AllOpKernels() {
C
chentianyu03 已提交
564
    static paddle::flat_hash_map<std::string, OpKernelMap> g_all_op_kernels;
Y
Yu Yang 已提交
565
    return g_all_op_kernels;
Y
Yu Yang 已提交
566
  }
Y
Yan Chunwei 已提交
567

568 569 570
  bool SupportGPU() const override;

  bool SupportNPU() const override;
571

F
fwenguang 已提交
572
  bool SupportMLU() const override {
573
    // TODO(zhiqiu): support phi if needed?
F
fwenguang 已提交
574 575 576 577 578 579
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_mlu_place(kern_pair.first.place_);
                       });
  }
580
  bool SupportsMKLDNN(proto::VarType::Type data_type) const;
581

582 583
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
584

585
  virtual void InferShape(InferShapeContext* ctx) const;
Y
Yu Yang 已提交
586

X
Xin Pan 已提交
587 588
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
589

590 591 592
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

593 594 595 596
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
      const ExecutionContext& ctx, const std::string& name1,
      const std::string& name2) const;

597
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
598

599 600
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
601 602 603
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
604

605 606
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
607 608 609
    return kernel_type_->place_;
  }

610
  /* member functions for adapting to phi lib */
611
  /** In the Tensor calculation library, the new Kernel adopts a clearer and
612 613 614 615 616 617
   * more streamlined design. The arguments of the Kernel and the input and
   * output arguments registered in the original OpMaker do not match in some
   * cases, so we use map to record the arguments required by the kernel.
   * When selecting Kernel during Op execution, select the arguments of the
   * original Op according to the GetExpectedPhiKernelArgs returned arguments.
   */
618
  phi::KernelSignature GetExpectedPhiKernelArgs(
619 620
      const ExecutionContext& ctx) const;

621 622
  /* member functions for adapting to phi lib */
  phi::KernelKey ChoosePhiKernel(const ExecutionContext& ctx) const;
623

624
  /**
625
   * Transfer data place for phi kernel
626 627
   * Is this really needed?
   */
628 629 630
  Scope* PreparePhiData(const Scope& scope, const phi::Kernel& pt_kernel,
                        const phi::KernelSignature& pt_kernel_signature,
                        RuntimeContext* ctx) const;
631

632 633 634
  void BuildPhiKernelContext(const RuntimeContext& ctx,
                             platform::DeviceContext* dev_ctx,
                             phi::KernelContext* pt_kernel_context) const;
635

636
  phi::KernelSignature* PhiKernelSignature() const {
637
    return kernel_signature_.get();
638 639
  }

640
  phi::Kernel* PhiKernel() const { return pt_kernel_.get(); }
641

642
  void ResetPhiKernel(phi::Kernel* kernel) const {
643 644 645
    return pt_kernel_.reset(kernel);
  }

646 647
  const OpKernelType* kernel_type() const { return kernel_type_.get(); }

648 649 650 651
  void ResetKernelType(OpKernelType* kernel_type) {
    kernel_type_.reset(kernel_type);
  }

Y
Yu Yang 已提交
652
 private:
653
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
654 655
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
656 657

  /**
T
tianshuo78520a 已提交
658 659
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
660 661 662 663
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
664 665 666 667
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
668 669 670 671

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
672

673 674 675
  OpKernelType InnerGetExpectedKernelType(const ExecutionContext& ctx) const;

  void ChooseKernel(const ExecutionContext& ctx) const;
L
Liu Yiqun 已提交
676

677 678 679
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

680 681 682 683 684
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
685
  void ParseInputDataType(const Variable* vars, const std::string& name,
686
                          proto::VarType::Type* data_type) const;
687 688 689
  void ParseMultiInputDataType(const std::vector<Variable*>& vars,
                               const std::string& name,
                               proto::VarType::Type* data_type) const;
690 691 692 693
  // used for IndicateOrPromoteVarDataTypes
  Tensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                   const std::string& name) const;

694
 protected:
L
Liu Yiqun 已提交
695 696
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
697 698
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
699
  mutable bool need_prepare_data_ = true;
700
  mutable bool need_prepare_phi_data_ = false;
701 702
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
703
  mutable std::mutex cache_update_mutex_;
704
  mutable bool enable_cache_transfer_scope_ = false;
705
  // NOTE(chenweihang): Similar op members are used to adapt to
706
  // new phi kernel, if there is a better design in the future,
707
  // we may polish the implementation here
708
  mutable bool run_phi_kernel_ = false;
L
Liu-xiandong 已提交
709
  mutable bool run_kp_kernel = false;
710
  mutable std::unique_ptr<phi::KernelSignature> kernel_signature_;
711
  mutable std::unique_ptr<phi::Kernel> pt_kernel_;
712
  mutable std::unique_ptr<phi::ArgumentMappingFn> arg_map_fn_;
713 714 715

  struct CacheImpl;
  mutable CacheImpl* impl_{nullptr};
Q
Qiao Longfei 已提交
716 717
};

Y
Yu Yang 已提交
718 719
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
720 721
}  // namespace framework
}  // namespace paddle