temporal_shift_op.cc 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/temporal_shift_op.h"
13 14 15
#include <memory>
#include <string>
#include <vector>
16 17 18 19 20 21 22
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

D
dengkaipeng 已提交
23
class TemporalShiftOp : public framework::OperatorWithKernel {
24 25 26 27 28 29 30 31 32 33 34
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of TemporalShiftOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of TemporalShiftOp should not be null.");

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
35 36
    PADDLE_ENFORCE_EQ(dim_x.size(), 4,
                      "Input(X) rank should be 4 in shape of [N*T, C, H, W].");
37 38

    int seg_num = ctx->Attrs().Get<int>("seg_num");
D
dengkaipeng 已提交
39
    float shift_ratio = ctx->Attrs().Get<float>("shift_ratio");
D
dengkaipeng 已提交
40
    PADDLE_ENFORCE_GT(seg_num, 0, "Attr(seg_num) should be greater than 0.");
D
dengkaipeng 已提交
41 42 43
    PADDLE_ENFORCE(shift_ratio > 0 || shift_ratio < .5,
                   "Attr(shift_ratio) should be greater than 0 and less "
                   "than 0.5.");
44 45

    if (ctx->IsRuntime()) {
D
dengkaipeng 已提交
46 47 48
      PADDLE_ENFORCE_EQ(
          dim_x[0] % seg_num, 0,
          "Input(X) dims[0] should be divided exactly by Attr(seg_num).");
49 50
    }

D
dengkaipeng 已提交
51
    ctx->SetOutputDim("Out", dim_x);
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    ctx->ShareLoD("X", "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace());
  }
};

class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input tensor of temporal shift operator. "
             "This is a 4-D tensor with shape of [N*T,  C, H, W]. "
             "While N is the batch size, T is the temporal segment "
             "number, C is the channel number, H is the height of "
             "features and W is the width of features.");
    AddOutput("Out",
              "The output tensor of temporal shift operator. "
              "This is a 4-D tensor in the same shape with Input(X).");

D
dengkaipeng 已提交
76 77
    AddAttr<int>("seg_num",
                 "The temporal segment number, this should be a positive "
D
dengkaipeng 已提交
78
                 "integer.");
D
dengkaipeng 已提交
79 80
    AddAttr<float>(
        "shift_ratio",
D
dengkaipeng 已提交
81
        "The shift ratio of the channels, the first :attr:`shift_ratio` part "
D
dengkaipeng 已提交
82
        "of channels will be shifted by -1 along the temporal dimension, "
D
dengkaipeng 已提交
83 84
        "and the second :attr:`shift_ratio` part of channels will be shifted "
        "by 1 along the temporal dimension. Default 0.25.")
D
dengkaipeng 已提交
85
        .SetDefault(0.25);
86 87

    AddComment(R"DOC(
88
          This operator calculates the temporal shifting features for Input(X).
89

90
          Input(X) should be in shape of [N*T, C, H, W], while N is the batch
D
dengkaipeng 已提交
91 92
          size, T is the temporal segment number specified by :attr:`seg_num`, 
          C is the channel number, H and W is the height and width of features.
93

D
dengkaipeng 已提交
94
          Temporal Shifting is calculated as follows:
95 96 97 98 99 100 101
          
          Step 1: Reshape Input(X) to [N, T, C, H, W].

          Step 2: Pad 0 to reshaping result in the 2nd(T) dimension with 
          padding width as 1 on each side, padding result will be in shape 
          of [N, T+2, C, H, W].

D
dengkaipeng 已提交
102
          Step 3: Assume :attr:`shift_ratio` is :math:`1/4`, slice padding 
D
dengkaipeng 已提交
103
          result as follows:
104

D
dengkaipeng 已提交
105 106 107 108 109 110 111 112 113 114 115 116
          $$
          slice1 = x[:, :T, :C/4, :, :]
          $$
          $$
          slice2 = x[:, 2:T+2, C/4:C/2, :, :]
          $$
          $$
          slice3 = x[:, 1:T+1, C/2:, :, :]
          $$

          Step 4: Concatenate three slices along the 3rd(C) dimension and 
          reshape result to [N*T, C, H, W].
117 118 119

          For details of temporal shifting, please refer to paper: 
          `Temporal Shift Module <http://arxiv.org/abs/1811.08383>`_ .
120 121 122 123 124

         )DOC");
  }
};

D
dengkaipeng 已提交
125
class TemporalShiftOpGrad : public framework::OperatorWithKernel {
126 127 128 129 130 131
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    if (ctx->HasOutput(framework::GradVarName("X"))) {
132 133
      ctx->SetOutputDim(framework::GradVarName("X"),
                        ctx->GetInputDim(framework::GradVarName("Out")));
134 135 136 137 138
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
        ctx.GetPlace());
  }
};

class TemporalShiftGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("temporal_shift_grad");
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
157 158 159 160 161 162 163
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
D
dengkaipeng 已提交
164
REGISTER_OPERATOR(temporal_shift, ops::TemporalShiftOp,
165
                  ops::TemporalShiftOpMaker, ops::TemporalShiftGradOpDescMaker);
166 167 168 169 170
REGISTER_OPERATOR(temporal_shift_grad, ops::TemporalShiftOpGrad);
REGISTER_OP_CPU_KERNEL(temporal_shift, ops::TemporalShiftKernel<float>,
                       ops::TemporalShiftKernel<double>);
REGISTER_OP_CPU_KERNEL(temporal_shift_grad, ops::TemporalShiftGradKernel<float>,
                       ops::TemporalShiftGradKernel<double>);