huber_loss_op.cc 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/huber_loss_op.h"
16 17 18
#include <memory>
#include <string>
#include <vector>
Y
yangyaming 已提交
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class HuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27 28 29
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must be initialized.");
Y
yangyaming 已提交
30

31 32
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
yangyaming 已提交
33

34 35
    PADDLE_ENFORCE_EQ(x_dims, y_dims);
    PADDLE_ENFORCE_EQ(x_dims.size(), 2,
36 37
                      "The rank of Input(X) must be 2 and the shape is "
                      "[batch_size, 1].");
38
    PADDLE_ENFORCE_EQ(x_dims[1], 1,
39 40
                      "Each row of Input(X) contains a real value, "
                      "so the 2nd dimension of Input(X) must be 1.");
Y
yangyaming 已提交
41

42 43 44
    ctx->SetOutputDim("Residual", x_dims);
    ctx->SetOutputDim("Out", {x_dims[0], 1});
    ctx->ShareLoD("X", "Out");
Y
yangyaming 已提交
45 46 47 48 49 50
  }
};

template <typename AttrType>
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
51
  void Make() override {
52 53 54 55 56 57
    AddInput("X",
             "The input value of huber loss op."
             "X is a 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
             "The target value of huber loss op."
             "Y is a 2-D tensor with shape [batch_size, 1].");
58
    AddOutput("Residual",
59
              "Intermediate tensor to cache residual value between Y and X."
60
              "The shape is same as Input(X) and will be reused in backward.")
Y
yangyaming 已提交
61
        .AsIntermediate();
62
    AddOutput("Out",
K
kexinzhao 已提交
63 64
              "The output tensor with shape [batch_size, 1] "
              "which represents the huber loss.");
Y
yangyaming 已提交
65 66
    AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
    AddComment(R"DOC(
K
kexinzhao 已提交
67 68
HuberLoss Operator.

69 70 71 72
Huber loss is a loss function used in robust regression. We define X as the
input value and Y as the target value. Huber loss can evaluate the fitness of
X to Y. Different from MSE loss, Huber loss is more robust for outliers. The
shape of X and Y are [batch_size, 1]. The equation is:
Y
yangyaming 已提交
73

74
$$
Y
yangyaming 已提交
75
Out_{\delta}(X, Y)_i =
76
\begin{cases}
Y
yangyaming 已提交
77 78 79
0.5 * (Y_i - X_i)^2,
\quad |Y_i - X_i| \leq \delta \\
\delta * (|Y_i - X_i| - 0.5 * \delta),
80
\quad otherwise
81
\end{cases}
82
$$
Y
yangyaming 已提交
83

Y
yangyaming 已提交
84 85 86
In the above equation, $Out_\delta(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.

Y
yangyaming 已提交
87 88 89 90 91 92 93 94
)DOC");
  }
};

class HuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

95 96 97 98 99 100 101 102 103
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");

    auto residual_dims = ctx->GetInputDim("Residual");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
104
      ctx->SetOutputDim(x_grad_name, residual_dims);
105 106
    }
    if (ctx->HasOutput(y_grad_name)) {
107
      ctx->SetOutputDim(y_grad_name, residual_dims);
108
    }
Y
yangyaming 已提交
109 110 111
  }
};

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
class HuberLossGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("huber_loss_grad");
    op->SetInput("Residual", Output("Residual"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

Y
yangyaming 已提交
129 130 131 132
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
133
REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
134
                  ops::HuberLossGradOpDescMaker);
135
REGISTER_OPERATOR(huber_loss_grad, ops::HuberLossGradOp);
Q
QI JUN 已提交
136
REGISTER_OP_CPU_KERNEL(
137 138
    huber_loss, ops::HuberLossKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HuberLossKernel<paddle::platform::CPUDeviceContext, double>);
Y
yangyaming 已提交
139 140
REGISTER_OP_CPU_KERNEL(
    huber_loss_grad,
141 142
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, double>);