__init__.py 17.0 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle.fluid import core
17
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager
18 19 20 21 22 23 24 25 26

from .streams import Stream  # noqa: F401
from .streams import Event  # noqa: F401

__all__ = [
    'Stream',
    'Event',
    'current_stream',
    'synchronize',
L
Linjie Chen 已提交
27
    'device_count',
28
    'empty_cache',
29 30 31 32
    'max_memory_allocated',
    'max_memory_reserved',
    'memory_allocated',
    'memory_reserved',
33
    'stream_guard',
34
    'get_device_properties',
35 36
    'get_device_name',
    'get_device_capability',
37 38 39 40 41 42 43 44
]


def current_stream(device=None):
    '''
    Return the current CUDA stream by the device.

    Parameters:
45
        device(paddle.CUDAPlace()|int, optional): The device or the ID of the device which want to get stream from.
46
        If device is None, the device is the current device. Default: None.
47

48 49
    Returns:
        CUDAStream: the stream to the device.
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            s1 = paddle.device.cuda.current_stream()

            s2 = paddle.device.cuda.current_stream(0)

            s3 = paddle.device.cuda.current_stream(paddle.CUDAPlace(0))

    '''

    device_id = -1

    if device is not None:
        if isinstance(device, int):
            device_id = device
        elif isinstance(device, core.CUDAPlace):
            device_id = device.get_device_id()
        else:
            raise ValueError("device type must be int or paddle.CUDAPlace")

    return core._get_current_stream(device_id)


def synchronize(device=None):
    '''
    Wait for the compute on the given CUDA device to finish.

    Parameters:
        device(paddle.CUDAPlace()|int, optional): The device or the ID of the device.
        If device is None, the device is the current device. Default: None.
85

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            paddle.device.cuda.synchronize()
            paddle.device.cuda.synchronize(0)
            paddle.device.cuda.synchronize(paddle.CUDAPlace(0))

    '''

    device_id = -1

    if device is not None:
        if isinstance(device, int):
            device_id = device
        elif isinstance(device, core.CUDAPlace):
            device_id = device.get_device_id()
        else:
            raise ValueError("device type must be int or paddle.CUDAPlace")

    return core._device_synchronize(device_id)
L
Linjie Chen 已提交
109 110 111 112 113


def device_count():
    '''
    Return the number of GPUs available.
114

L
Linjie Chen 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    Returns:
        int: the number of GPUs available.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.cuda.device_count()

    '''

    num_gpus = core.get_cuda_device_count() if hasattr(
        core, 'get_cuda_device_count') else 0

    return num_gpus
131 132 133


def empty_cache():
134
    '''
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    Releases idle cached memory held by the allocator so that those can be used in other GPU
    application and visible in `nvidia-smi`. In most cases you don't need to use this function,
    Paddle does not release the memory back to the OS when you remove Tensors on the GPU,
    Because it keeps gpu memory in a pool so that next allocations can be done much faster.

    Examples:
        .. code-block:: python

            import paddle

            # required: gpu
            paddle.set_device("gpu")
            tensor = paddle.randn([512, 512, 512], "float")
            del tensor
            paddle.device.cuda.empty_cache()
150
    '''
151 152 153

    if core.is_compiled_with_cuda():
        core.cuda_empty_cache()
154 155


156 157 158 159 160
def extract_cuda_device_id(device, op_name):
    '''
    Return the id of the given cuda device. It is just a utility that will not be exposed to users.

    Args:
161
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
            the string name of device like 'gpu:x'.
            Default: None.

    Return:
        int: The id of the given device. If device is None, return the id of current device.
    '''
    if (device is None):
        return core.get_cuda_current_device_id()

    if isinstance(device, int):
        device_id = device
    elif isinstance(device, core.CUDAPlace):
        device_id = device.get_device_id()
    elif isinstance(device, str):
        if device.startswith('gpu:'):
            device_id = int(device[4:])
        else:
            raise ValueError(
                "The current string {} is not expected. Because {} only support string which is like 'gpu:x'. "
181 182
                "Please input appropriate string again!".format(
                    device, op_name))
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    else:
        raise ValueError(
            "The device type {} is not expected. Because {} only support int, str or paddle.CUDAPlace. "
            "Please input appropriate device again!".format(device, op_name))

    assert device_id >= 0, f"The device id must be not less than 0, but got id = {device_id}."
    assert device_id < device_count(
    ), f"The device id {device_id} exceeds gpu card number {device_count()}"

    return device_id


def max_memory_allocated(device=None):
    '''
    Return the peak size of gpu memory that is allocated to tensor of the given device.

    .. note::
200
        The size of GPU memory allocated to tensor is 256-byte aligned in Paddle, which may larger than the memory size that tensor actually need.
201 202 203
        For instance, a float32 tensor with shape [1] in GPU will take up 256 bytes memory, even though storing a float32 data requires only 4 bytes.

    Args:
204 205
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
            the string name of device like 'gpu:x'. If device is None, the device is the current device.
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
            Default: None.

    Return:
        int: The peak size of gpu memory that is allocated to tensor of the given device, in bytes.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            max_memory_allocated_size = paddle.device.cuda.max_memory_allocated(paddle.CUDAPlace(0))
            max_memory_allocated_size = paddle.device.cuda.max_memory_allocated(0)
            max_memory_allocated_size = paddle.device.cuda.max_memory_allocated("gpu:0")
    '''
    name = "paddle.device.cuda.max_memory_allocated"
    if not core.is_compiled_with_cuda():
        raise ValueError(
            f"The API {name} is not supported in CPU-only PaddlePaddle. Please reinstall PaddlePaddle with GPU support to call this API."
        )
    device_id = extract_cuda_device_id(device, op_name=name)
227
    return core.device_memory_stat_peak_value("Allocated", device_id)
228 229 230 231 232 233 234


def max_memory_reserved(device=None):
    '''
    Return the peak size of GPU memory that is held by the allocator of the given device.

    Args:
235 236
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
            the string name of device like 'gpu:x'. If device is None, the device is the current device.
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            Default: None.

    Return:
        int: The peak size of GPU memory that is held by the allocator of the given device, in bytes.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            max_memory_reserved_size = paddle.device.cuda.max_memory_reserved(paddle.CUDAPlace(0))
            max_memory_reserved_size = paddle.device.cuda.max_memory_reserved(0)
            max_memory_reserved_size = paddle.device.cuda.max_memory_reserved("gpu:0")
    '''
    name = "paddle.device.cuda.max_memory_reserved"
    if not core.is_compiled_with_cuda():
        raise ValueError(
            f"The API {name} is not supported in CPU-only PaddlePaddle. Please reinstall PaddlePaddle with GPU support to call this API."
        )
    device_id = extract_cuda_device_id(device, op_name=name)
258
    return core.device_memory_stat_peak_value("Reserved", device_id)
259 260 261 262 263 264 265


def memory_allocated(device=None):
    '''
    Return the current size of gpu memory that is allocated to tensor of the given device.

    .. note::
266 267
        The size of GPU memory allocated to tensor is 256-byte aligned in Paddle, which may be larger than the memory size that tensor actually need.
        For instance, a float32 tensor with shape [1] in GPU will take up 256 bytes memory, even though storing a float32 data requires only 4 bytes.
268 269

    Args:
270 271
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
            the string name of device like 'gpu:x'. If device is None, the device is the current device.
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
            Default: None.

    Return:
        int: The current size of gpu memory that is allocated to tensor of the given device, in bytes.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            memory_allocated_size = paddle.device.cuda.memory_allocated(paddle.CUDAPlace(0))
            memory_allocated_size = paddle.device.cuda.memory_allocated(0)
            memory_allocated_size = paddle.device.cuda.memory_allocated("gpu:0")
    '''
    name = "paddle.device.cuda.memory_allocated"
    if not core.is_compiled_with_cuda():
        raise ValueError(
            f"The API {name} is not supported in CPU-only PaddlePaddle. Please reinstall PaddlePaddle with GPU support to call this API."
        )
    device_id = extract_cuda_device_id(device, op_name=name)
293
    return core.device_memory_stat_current_value("Allocated", device_id)
294 295 296 297 298 299 300


def memory_reserved(device=None):
    '''
    Return the current size of GPU memory that is held by the allocator of the given device.

    Args:
301 302
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
            the string name of device like 'gpu:x'. If device is None, the device is the current device.
303 304 305 306 307
            Default: None.

    Return:
        int: The current size of GPU memory that is held by the allocator of the given device, in bytes.

308
    Examples:
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
        .. code-block:: python

            # required: gpu
            import paddle

            memory_reserved_size = paddle.device.cuda.memory_reserved(paddle.CUDAPlace(0))
            memory_reserved_size = paddle.device.cuda.memory_reserved(0)
            memory_reserved_size = paddle.device.cuda.memory_reserved("gpu:0")
    '''
    name = "paddle.device.cuda.memory_reserved"
    if not core.is_compiled_with_cuda():
        raise ValueError(
            f"The API {name} is not supported in CPU-only PaddlePaddle. Please reinstall PaddlePaddle with GPU support to call this API."
        )
    device_id = extract_cuda_device_id(device, op_name=name)
324
    return core.device_memory_stat_current_value("Reserved", device_id)
325 326


327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
def _set_current_stream(stream):
    '''
    Set the current stream.

    Parameters:
        stream(paddle.device.cuda.Stream): The selected stream.

    Returns:
        CUDAStream: The previous stream.

    '''

    if not isinstance(stream, paddle.device.cuda.Stream):
        raise TypeError("stream type should be paddle.device.cuda.Stream")

    cur_stream = current_stream()
    if id(stream) == id(cur_stream):
        return stream
    return core._set_current_stream(stream)


@signature_safe_contextmanager
def stream_guard(stream):
    '''
    **Notes**:
        **This API only supports dygraph mode currently.**

    A context manager that specifies the current stream context by the given stream.

    Parameters:
S
Siming Dai 已提交
357
        stream(paddle.device.cuda.Stream): the selected stream. If stream is None, just yield.
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            s = paddle.device.cuda.Stream()
            data1 = paddle.ones(shape=[20])
            data2 = paddle.ones(shape=[20])
            with paddle.device.cuda.stream_guard(s):
                data3 = data1 + data2

    '''

    if stream is not None and not isinstance(stream, paddle.device.cuda.Stream):
        raise TypeError("stream type should be paddle.device.cuda.Stream")

    cur_stream = current_stream()
    if stream is None or id(stream) == id(cur_stream):
        yield
    else:
        pre_stream = _set_current_stream(stream)
        try:
            yield
        finally:
            stream = _set_current_stream(pre_stream)
385 386 387 388 389 390 391


def get_device_properties(device=None):
    '''
    Return the properties of given device.

    Args:
392 393 394
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
            the string name of device like 'gpu:x' which to get the properties of the
            device from. If device is None, the device is the current device.
395 396 397
            Default: None.

    Returns:
398 399
        _gpuDeviceProperties: The properties of the device which include ASCII string
        identifying device, major compute capability, minor compute capability, global
400
        memory available and the number of multiprocessors on the device.
401 402

    Examples:
403

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        .. code-block:: python

            # required: gpu

            import paddle
            paddle.device.cuda.get_device_properties()
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

            paddle.device.cuda.get_device_properties(0)
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

            paddle.device.cuda.get_device_properties('gpu:0')
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

            paddle.device.cuda.get_device_properties(paddle.CUDAPlace(0))
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

    '''

    if not core.is_compiled_with_cuda():
        raise ValueError(
            "The API paddle.device.cuda.get_device_properties is not supported in "
            "CPU-only PaddlePaddle. Please reinstall PaddlePaddle with GPU support "
            "to call this API.")

    if device is not None:
        if isinstance(device, int):
            device_id = device
        elif isinstance(device, core.CUDAPlace):
            device_id = device.get_device_id()
        elif isinstance(device, str):
            if device.startswith('gpu:'):
                device_id = int(device[4:])
            else:
                raise ValueError(
                    "The current string {} is not expected. Because paddle.device."
                    "cuda.get_device_properties only support string which is like 'gpu:x'. "
                    "Please input appropriate string again!".format(device))
        else:
            raise ValueError(
                "The device type {} is not expected. Because paddle.device.cuda."
                "get_device_properties only support int, str or paddle.CUDAPlace. "
                "Please input appropriate device again!".format(device))
    else:
        device_id = -1

    return core.get_device_properties(device_id)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486


def get_device_name(device=None):
    '''
    Return the name of the device which is got from CUDA function `cudaDeviceProp <https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g1bf9d625a931d657e08db2b4391170f0>`_.

    Parameters:
        device(paddle.CUDAPlace|int, optional): The device or the ID of the device. If device is None (default), the device is the current device.

    Returns:
        str: The name of the device.

    Examples:

        .. code-block:: python

            # required: gpu

            import paddle

            paddle.device.cuda.get_device_name()

            paddle.device.cuda.get_device_name(0)

            paddle.device.cuda.get_device_name(paddle.CUDAPlace(0))

    '''

    return get_device_properties(device).name


def get_device_capability(device=None):
    '''
    Return the major and minor revision numbers defining the device's compute capability which are got from CUDA function `cudaDeviceProp <https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g1bf9d625a931d657e08db2b4391170f0>`_.

    Parameters:
487
        device(paddle.CUDAPlace|int, optional): The device or the ID of the device. If device is None (default), the device is the current device.
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

    Returns:
        tuple(int,int): the major and minor revision numbers defining the device's compute capability.

    Examples:

        .. code-block:: python

            # required: gpu

            import paddle

            paddle.device.cuda.get_device_capability()

            paddle.device.cuda.get_device_capability(0)

            paddle.device.cuda.get_device_capability(paddle.CUDAPlace(0))

    '''
    prop = get_device_properties(device)
    return prop.major, prop.minor