test_trt_convert_bilinear_interp_v2.py 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
from functools import partial
17
from typing import Any, Dict, List
18 19 20 21 22 23

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer
24 25 26 27 28 29 30 31 32


class TrtConvertBilinearInterpV2Test(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        inputs = program_config.inputs
        weights = program_config.weights
        attrs = [
            program_config.ops[i].attrs for i in range(len(program_config.ops))
        ]
33 34 35 36
        ver = paddle_infer.get_trt_compile_version()
        # here is consistent with op_teller.cc
        if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7100:
            return False
37 38 39 40
        return True

    def sample_program_configs(self):
        def generate_input1(attrs: List[Dict[str, Any]]):
41 42 43
            return np.random.uniform(
                low=0.0, high=1.0, size=[1, 3, 64, 64]
            ).astype(np.float32)
44 45

        def generate_input2(attrs: List[Dict[str, Any]]):
46 47 48
            return np.random.uniform(low=0.5, high=6.0, size=(2)).astype(
                "float32"
            )
49 50

        for data_layout in ["NCHW", "NHWC"]:
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
            for align_corners in [False, True]:
                for scale_y in [2.0, 1.0]:
                    for scale_x in [2.0]:
                        scale = [scale_y, scale_x]
                        dics = [
                            {
                                "data_layout": data_layout,
                                "interp_method": "bilinear",
                                "align_corners": align_corners,
                                "align_mode": 0,
                                "scale": scale,
                                "out_h": -1,
                                "out_w": -1,
                            }
                        ]

                        ops_config = [
                            {
                                "op_type": "bilinear_interp_v2",
                                "op_inputs": {
                                    "X": ["input_data"],
                                    "Scale": ["input_scale"],
73
                                },
74 75
                                "op_outputs": {
                                    "Out": ["bilinear_interp_v2_output_data"]
76
                                },
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
                                "op_attrs": dics[0],
                            }
                        ]
                        ops = self.generate_op_config(ops_config)

                        program_config = ProgramConfig(
                            ops=ops,
                            weights={
                                "input_scale": TensorConfig(
                                    data_gen=partial(generate_input2, dics)
                                )
                            },
                            inputs={
                                "input_data": TensorConfig(
                                    data_gen=partial(generate_input1, dics)
                                )
                            },
                            outputs=["bilinear_interp_v2_output_data"],
                        )
96

97
                        yield program_config
98 99

    def sample_predictor_configs(
100 101
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        def generate_dynamic_shape(attrs):
            self.dynamic_shape.min_input_shape = {"input_data": [1, 3, 64, 64]}
            self.dynamic_shape.max_input_shape = {"input_data": [4, 3, 64, 64]}
            self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 64, 64]}

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(attrs, dynamic_shape):
            return 1, 2

        attrs = [
            program_config.ops[i].attrs for i in range(len(program_config.ops))
        ]

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
122
        program_config.set_input_type(np.float32)
123
        yield self.create_inference_config(), generate_trt_nodes_num(
124 125
            attrs, False
        ), 1e-5
126
        self.trt_param.precision = paddle_infer.PrecisionType.Half
127
        program_config.set_input_type(np.float16)
128
        yield self.create_inference_config(), generate_trt_nodes_num(
129 130
            attrs, False
        ), 1e-2
131 132 133 134

        # for dynamic_shape
        generate_dynamic_shape(attrs)
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
135
        program_config.set_input_type(np.float32)
136
        yield self.create_inference_config(), generate_trt_nodes_num(
137
            attrs, True
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        ), (1e-5, 1e-5)
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, True
        ), 1e-2

    def test(self):
        self.run_test()


class TrtConvertBilinearInterpV2Test1(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        inputs = program_config.inputs
        weights = program_config.weights
        attrs = [
            program_config.ops[i].attrs for i in range(len(program_config.ops))
        ]
        ver = paddle_infer.get_trt_compile_version()
        # here is consistent with op_teller.cc
        if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7100:
            return False
        return True

    def sample_program_configs(self):
        self.workspace_size = 1 << 32

        def generate_input1(attrs: List[Dict[str, Any]]):
            return np.random.uniform(
                low=0.0, high=1.0, size=[1, 18, 144, 144]
            ).astype(np.float32)

        for data_layout in ["NCHW", "NHWC"]:
            for align_corners in [False, True]:
                for out_h in [128, 288]:
                    for out_w in [288]:
                        dics = [
                            {
                                "data_layout": data_layout,
                                "interp_method": "bilinear",
                                "align_corners": align_corners,
                                "align_mode": 0,
                                "scale": [],
                                "out_h": out_h,
                                "out_w": out_w,
                            }
                        ]

                        ops_config = [
                            {
                                "op_type": "bilinear_interp_v2",
                                "op_inputs": {
                                    "X": ["input_data"],
                                },
                                "op_outputs": {
                                    "Out": ["bilinear_interp_v2_output_data"]
                                },
                                "op_attrs": dics[0],
                            }
                        ]
                        ops = self.generate_op_config(ops_config)

                        program_config = ProgramConfig(
                            ops=ops,
                            weights={},
                            inputs={
                                "input_data": TensorConfig(
                                    data_gen=partial(generate_input1, dics)
                                )
                            },
                            outputs=["bilinear_interp_v2_output_data"],
                        )

                        yield program_config

    def sample_predictor_configs(
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
        def generate_dynamic_shape(attrs):
            self.dynamic_shape.min_input_shape = {
                "input_data": [1, 18, 144, 144]
            }
            self.dynamic_shape.max_input_shape = {
                "input_data": [8, 18, 144, 144]
            }
            self.dynamic_shape.opt_input_shape = {
                "input_data": [4, 18, 144, 144]
            }

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(attrs, dynamic_shape):
            return 1, 2

        attrs = [
            program_config.ops[i].attrs for i in range(len(program_config.ops))
        ]

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, False
243
        ), 1e-5
244
        self.trt_param.precision = paddle_infer.PrecisionType.Half
245
        program_config.set_input_type(np.float16)
246 247 248 249 250 251 252 253 254 255 256
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, False
        ), 1e-2

        # for dynamic_shape
        generate_dynamic_shape(attrs)
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, True
        ), (1e-5, 1e-5)
        self.trt_param.precision = paddle_infer.PrecisionType.Half
257
        yield self.create_inference_config(), generate_trt_nodes_num(
258 259
            attrs, True
        ), 1e-2
260 261 262 263 264 265 266

    def test(self):
        self.run_test()


if __name__ == "__main__":
    unittest.main()