operator.cc 136.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18
#include <unordered_set>
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/raw_tensor.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
29
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/var_type.h"
31
#include "paddle/fluid/operators/isfinite_op.h"
32
#include "paddle/fluid/operators/ops_extra_info.h"
33
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
34
#include "paddle/fluid/platform/enforce.h"
35
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
36
#include "paddle/fluid/platform/profiler/event_tracing.h"
37
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
38
#include "paddle/phi/common/int_array.h"
39
#include "paddle/phi/common/scalar.h"
40
#include "paddle/phi/core/compat/get_kerneltype_forvar_utils.h"
41
#include "paddle/phi/core/ddim.h"
42
#include "paddle/phi/core/flags.h"
43
#include "paddle/phi/core/kernel_context.h"
44 45
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
46

47
namespace phi {
48
class DenseTensor;
49
}  // namespace phi
50

51
#ifdef PADDLE_WITH_XPU
52 53
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
54
#endif
Q
Qiao Longfei 已提交
55

56 57
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
58
#include "paddle/fluid/platform/mkldnn_op_list.h"
59 60
#endif

61 62 63 64
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#endif

D
dzhwinter 已提交
65
DECLARE_bool(benchmark);
66
PHI_DECLARE_bool(check_nan_inf);
67
DECLARE_bool(enable_unused_var_check);
68 69
PHI_DECLARE_bool(run_kp_kernel);
PHI_DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
70

Q
Qiao Longfei 已提交
71 72 73
namespace paddle {
namespace framework {

74 75 76 77 78 79
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
80

81
static DDim GetDimsDebug(const Scope& scope,
82
                         const std::string& name,
83
                         bool get_actual_dim = false) {
84
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
85 86
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
87 88
  }

89 90
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
91
    return tensor.dims();
92
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
93
    if (get_actual_dim) {
94
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
95
    } else {
96
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
97
    }
S
Steffy-zxf 已提交
98 99
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
100 101 102 103 104
  } else {
    return DDim({-1});
  }
}

105
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
106 107 108 109 110
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

111
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
112 113 114 115
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
116

117 118
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
119
    if (UNLIKELY(!tensor.IsInitialized())) {
120 121
      return "";
    }
122
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
123 124
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
125 126 127
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
128
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
129
    }
S
Steffy-zxf 已提交
130 131
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
132 133 134 135 136
  } else {
    return "";
  }
}

137
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
138 139 140 141 142 143 144 145 146 147
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

148 149
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
150 151 152 153
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
154 155
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
156 157 158 159 160 161 162 163 164 165
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

166
static int GetRowSize(const Scope& scope, const std::string& name) {
167 168 169 170 171
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

172 173
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
174 175 176 177 178
  }

  return -1;
}

179
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
180 181 182 183 184 185 186
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

187 188
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
189
    return tensor.lod();
Q
Qiao Longfei 已提交
190 191 192 193 194
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
195 196 197 198 199
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
200
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
201 202 203 204 205 206
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
207
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
208 209 210 211 212 213
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

214 215 216 217 218 219 220 221 222 223 224 225
RuntimeInferShapeContext::RuntimeInferShapeContext(const OperatorBase& op,
                                                   const RuntimeContext& ctx)
    : op_(op), ctx_(ctx) {}

bool RuntimeInferShapeContext::HasInput(const std::string& name) const {
  // has only one input
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end()) {
    return false;
  }
  const auto& in = it->second;
226
  if (in.empty()) return false;
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  PADDLE_ENFORCE_EQ(
      in.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input %s should not contain more than one inputs.", name));
  return in[0] != nullptr;
}

bool RuntimeInferShapeContext::HasOutput(const std::string& name) const {
  // has only one output
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end()) {
    return false;
  }
  const auto& out = it->second;
243
  if (out.empty()) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    return false;
  }
  PADDLE_ENFORCE_EQ(
      out.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Output %s should not contain more than one outputs.", name));
  return out[0] != nullptr;
}

bool RuntimeInferShapeContext::HasAttr(const std::string& name) const {
  return op_.HasAttr(name);
}

bool RuntimeInferShapeContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (auto& input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

bool RuntimeInferShapeContext::HasOutputs(const std::string& name,
                                          bool allow_null) const {
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end() || it->second.empty()) {
    return false;
  }
  if (!allow_null) {
    for (auto& output : it->second) {
      if (output == nullptr) return false;
    }
  }
  return true;
}

AttrReader RuntimeInferShapeContext::Attrs() const {
  return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
}

std::vector<std::string> RuntimeInferShapeContext::Inputs(
    const std::string& name) const {
  return op_.Inputs(name);
}

std::vector<std::string> RuntimeInferShapeContext::Outputs(
    const std::string& name) const {
  return op_.Outputs(name);
}

std::string RuntimeInferShapeContext::GetInputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->inputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->inputs().size()));
  return op_proto->inputs()[idx].name();
}

std::string RuntimeInferShapeContext::GetOutputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->outputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of outputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->outputs().size()));
  return op_proto->outputs()[idx].name();
}

void RuntimeInferShapeContext::ShareDim(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second[i];
  Variable* out_var = out_it->second[j];

  PADDLE_ENFORCE_EQ(
      in_var->Type(),
      out_var->Type(),
      platform::errors::InvalidArgument(
          "The type of input (%s) and output (%s) are inconsistent.", in, out));

  if (in_var->IsType<phi::SelectedRows>()) {
    auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
    auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
    out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
    out_sele_rows->set_rows(in_sele_rows.rows());
    out_sele_rows->set_height(in_sele_rows.height());
  } else if (in_var->IsType<phi::DenseTensor>()) {
    auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_lod_tensor->Resize(in_lod_tensor.dims());
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Currently, the input type of ShareDim only can be phi::DenseTensor "
        "or SelectedRows."));
  }
}

void RuntimeInferShapeContext::ShareAllLoD(const std::string& in,
                                           const std::string& out) const {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound(
                        "Input [%s] found error in Op [%s]", in, op_.Type()));
  PADDLE_ENFORCE_NE(out_it,
                    ctx_.outputs.end(),
                    platform::errors::NotFound(
                        "Output [%s] found error in Op [%s]", out, op_.Type()));

  auto& in_var_list = in_it->second;
  auto& out_var_list = out_it->second;

  PADDLE_ENFORCE_EQ(
      in_var_list.size(),
      out_var_list.size(),
      platform::errors::PreconditionNotMet(
          "Op [%s]: Input var size should be equal with output var size",
          op_.Type()));

  auto& out_var_names = op_.Outputs(out);

  for (size_t i = 0; i < in_var_list.size(); ++i) {
    if (out_var_names[i] == framework::kEmptyVarName) {
      continue;
    }

    Variable* in_var = in_var_list[i];
    if (!in_var->IsType<phi::DenseTensor>()) return;
    Variable* out_var = out_var_list[i];
    PADDLE_ENFORCE_EQ(
        out_var->IsType<phi::DenseTensor>(),
        true,
        platform::errors::PreconditionNotMet(
            "The %d-th output of Output(%s) must be phi::DenseTensor.",
            i,
            out_var_names[i]));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
    if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
  }
}

void RuntimeInferShapeContext::ShareLoD(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) const {
  if (can_skip_lod_) {
    return;
  }
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second.at(i);
  if (!in_var->IsType<phi::DenseTensor>()) return;
  Variable* out_var = out_it->second.at(j);
  PADDLE_ENFORCE_EQ(
      out_var->IsType<phi::DenseTensor>(),
      true,
      platform::errors::InvalidArgument(
          "The %zu-th output of Output(%s) must be phi::DenseTensor.", j, out));
  auto& in_tensor = in_var->Get<phi::DenseTensor>();
  auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
  out_tensor->set_lod(in_tensor.lod());

// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out phi::DenseTensor?
#ifdef PADDLE_WITH_MKLDNN
  // Fix me: ugly workaround below
  // Correct solution:
  //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
  //    layout of output tensor should be set "manually" in Compute()
  //    of each OPKernel. The reason layout should NOT be shared between
  //    input and output "automatically" (now by InferShape()->ShareLoD())
  //    is that layout transform may occur after InferShape().
  // Workaround:
  //    Skip set_layout() when input layout is kMKLDNN
  //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
  //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
  //    in Compute()
  if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
    out_tensor->set_layout(in_tensor.layout());
}

int32_t RuntimeInferShapeContext::GetLoDLevel(const std::string& in,
                                              size_t i) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

void RuntimeInferShapeContext::SetLoDLevel(const std::string& out,
                                           int32_t lod_level,
                                           size_t j) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

bool RuntimeInferShapeContext::IsRuntime() const { return true; }

bool RuntimeInferShapeContext::IsRunMKLDNNKernel() const {
  try {
    auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
    return ((op_with_kernel.kernel_type()) &&
            (op_with_kernel.kernel_type()->data_layout_ ==
             phi::DataLayout::ONEDNN));
  } catch (std::bad_cast& exp) {
    return false;
  }
}

// TODO(paddle-dev): Can this be template?
paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
RuntimeInferShapeContext::GetInputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
RuntimeInferShapeContext::GetOutputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

DDim RuntimeInferShapeContext::GetInputDim(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input(%s) should hold one element, but now it holds %zu elements.",
          name,
          vars.size()));
  return this->GetDim(vars[0]);
}

std::vector<DDim> RuntimeInferShapeContext::GetInputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  return GetDims(vars);
}

proto::VarType::Type RuntimeInferShapeContext::GetInputVarType(
    const std::string& name) const {
  return GetVarType(InputVars(name).at(0));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetInputsVarType(
    const std::string& name) const {
  return GetVarTypes(InputVars(name));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetOutputsVarType(
    const std::string& name) const {
  return GetVarTypes(OutputVars(name));
}

void RuntimeInferShapeContext::SetOutputDim(const std::string& name,
                                            const DDim& dim) {
  auto& vars = OutputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                        "but now it holds %zu elements.",
                                        name,
                                        vars.size()));
  SetDim(vars[0], dim);
}

void RuntimeInferShapeContext::SetOutputsDim(const std::string& name,
                                             const std::vector<DDim>& dims) {
  auto& vars = OutputVars(name);
  SetDims(vars, dims);
}

const phi::ArgumentMappingFn*
RuntimeInferShapeContext::GetPhiArgumentMappingFn() const {
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
}

const phi::KernelSignature*
RuntimeInferShapeContext::GetPhiDefaultKernelSignature() const {
  return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
}

void RuntimeInferShapeContext::SetSkipLoD(bool skip) { can_skip_lod_ = skip; }

P
pangengzheng 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
std::vector<LoD> RuntimeInferShapeContext::GetOutputsLod(
    const std::string& out) const {
  auto out_it = ctx_.outputs.find(out);
  auto& out_var_list = out_it->second;

  std::vector<LoD> ret;
  for (size_t i = 0; i < out_var_list.size(); ++i) {
    Variable* out_var = out_var_list[i];
    if (out_var != nullptr) {
      auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
      ret.push_back(out_tensor->lod());
    }
  }
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetOutputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  std::vector<Variable*> vars_res;
  for (auto var : vars) {
    if (var != nullptr) {
      vars_res.push_back(var);
    }
  }
  return GetDims(vars_res);
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
DDim RuntimeInferShapeContext::GetDim(Variable* var) const {
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::InvalidArgument("Input variable is nullptr."));
  if (var->IsType<phi::DenseTensor>()) {
    return var->Get<phi::DenseTensor>().dims();
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().GetCompleteDims();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
        "Variable's type is %s.",
        ToTypeName(var->Type())));
  }
}

std::vector<DDim> RuntimeInferShapeContext::GetDims(
    const std::vector<Variable*>& vars) const {
  std::vector<DDim> ret;
  ret.reserve(vars.size());
  std::transform(
      vars.begin(), vars.end(), std::back_inserter(ret), [this](Variable* var) {
        return this->GetDim(var);
      });
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetRepeatedDims(
    const std::string& name) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetRepeatedDims method only ban be used in compile time."));
}

void RuntimeInferShapeContext::SetDim(Variable* var, const DDim& dim) {
  if (var->IsType<phi::DenseTensor>()) {
    var->GetMutable<phi::DenseTensor>()->Resize(dim);
  } else if (var->IsType<phi::SelectedRows>()) {
    var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Variable type error, expect phi::DenseTensor or SelectedRows, but "
        "received "
        "(%s).",
        ToTypeName(var->Type())));
  }
}

void RuntimeInferShapeContext::SetDims(const std::vector<Variable*>& vars,
                                       const std::vector<DDim>& dims) {
  size_t length = vars.size();
  PADDLE_ENFORCE_EQ(length,
                    dims.size(),
                    platform::errors::InvalidArgument(
                        "The number of input variables do not match the "
                        "number of input dimensions, the number of variables "
                        "is %zu, the number of dimensions is %zu.",
                        length,
                        dims.size()));
  for (size_t i = 0; i < length; ++i) {
    if (vars[i] == nullptr) {
      continue;
    }
    SetDim(vars[i], dims[i]);
  }
}

void RuntimeInferShapeContext::SetRepeatedDims(const std::string& name,
                                               const std::vector<DDim>& dims) {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetRepeatedDims method only can be used in compile time."));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetVarTypes(
    const std::vector<Variable*>& vars) const {
  std::vector<proto::VarType::Type> retv;
  retv.resize(vars.size());
713 714 715 716 717 718 719
  std::transform(
      vars.begin(),
      vars.end(),
      retv.begin(),
      std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),  // NOLINT
                this,
                std::placeholders::_1));
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
  return retv;
}

proto::VarType::Type RuntimeInferShapeContext::GetVarType(Variable* var) const {
  return ToVarType(var->Type());
}

const std::vector<Variable*>& RuntimeInferShapeContext::InputVars(
    const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.inputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the input (%s).", op_.Type(), name));
  return it->second;
}

const std::vector<Variable*>& RuntimeInferShapeContext::OutputVars(
    const std::string& name) const {
  auto it = ctx_.outputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.outputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
  return it->second;
}

749
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
750 751 752
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
753
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
754 755 756 757
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
758
#else
759
      auto dev_id = place.device;
P
peizhilin 已提交
760
      platform::SetDeviceId(dev_id);
761 762 763
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
764 765 766 767
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
768
#else
769
      auto dev_id = place.device;
770
      platform::SetXPUDeviceId(dev_id);
771 772 773 774 775 776 777 778
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
779
      phi::DeviceManager::SetDevice(place);
780
#endif
P
peizhilin 已提交
781
    }
P
peizhilin 已提交
782

783
    {
784 785 786
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
787
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
788
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
789 790
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
791 792
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
793
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
794
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
795 796
      RunImpl(scope, place);
    }
797

Z
Zhang Ting 已提交
798
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
799
  } catch (platform::EnforceNotMet& exception) {
800
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
801
    throw std::move(exception);
802 803 804 805 806 807
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
808
  } catch (...) {
809
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
810
    std::rethrow_exception(std::current_exception());
811
  }
812 813
}

814
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
815
  return inputs_.find(name) != inputs_.end();
816 817
}

818
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
819
  auto& ins = Inputs(name);
820
  PADDLE_ENFORCE_LE(
821 822
      ins.size(),
      1UL,
823
      platform::errors::InvalidArgument(
824 825
          "Operator %s's input %s should contain only one variable.",
          type_,
826
          name));
Y
Yu Yang 已提交
827
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
828 829
}

Y
Yu Yang 已提交
830 831
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
832
  auto it = inputs_.find(name);
833
  PADDLE_ENFORCE_NE(
834 835 836 837
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
838
  return it->second;
Y
Yan Chunwei 已提交
839 840
}

841
bool OperatorBase::HasOutputs(const std::string& name) const {
842
  if (outputs_.find(name) != outputs_.end()) {
843 844 845 846 847 848
    return true;
  } else {
    return false;
  }
}

849
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
850
  auto& outs = Outputs(name);
851
  PADDLE_ENFORCE_LE(
852 853
      outs.size(),
      1UL,
854
      platform::errors::InvalidArgument(
855 856
          "Operator %s's output %s should contain only one variable.",
          type_,
857
          name));
Y
Yu Yang 已提交
858
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
859 860
}

Y
Yu Yang 已提交
861 862
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
863
  auto it = outputs_.find(name);
864
  PADDLE_ENFORCE_NE(
865 866
      it,
      outputs_.end(),
867 868
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
869
  return it->second;
Y
Yan Chunwei 已提交
870 871
}

872
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
873
  std::stringstream ss;
Y
Yu Yang 已提交
874
  ss << "Op(" << type_ << "), inputs:{";
875

876
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
877 878
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
879 880
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
881 882
  }

Y
Yu Yang 已提交
883 884
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
885 886
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
887 888
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
889 890
      auto var_name = input.second[i];
      ss << var_name;
891
      if (scope) {
Q
Qiao Longfei 已提交
892 893 894 895 896 897 898
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
899 900 901
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
902 903 904
          std::string place = is_no_need_buffer_var
                                  ? "unknown_place"
                                  : GetPlace(*scope, var_name);
Q
Qiao Longfei 已提交
905
          ss << ":" << dtype;
906 907
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
908
          ss << "(" << place << ")";
909
        }
910
      }
Y
Yu Yang 已提交
911 912 913
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
914
    }
Y
Yu Yang 已提交
915
    ss << "]";
Y
Yu Yang 已提交
916 917
    ++it;
    if (it != inputs_.end()) {
918 919
      ss << ", ";
    }
Q
Qiao Longfei 已提交
920
  }
Y
Yu Yang 已提交
921
  ss << "}, outputs:{";
Y
Yu Yang 已提交
922 923
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
924 925
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
926 927
      auto var_name = output.second[i];
      ss << var_name;
928
      if (scope) {
Q
Qiao Longfei 已提交
929 930 931 932 933 934 935
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
936 937
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
938 939
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
940
          ss << "(" << GetPlace(*scope, var_name) << ")";
941
        }
942
      }
Y
Yu Yang 已提交
943 944 945
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
946
    }
Y
Yu Yang 已提交
947
    ss << "]";
Y
Yu Yang 已提交
948 949
    ++it;
    if (it != outputs_.end()) {
950 951
      ss << ", ";
    }
Q
Qiao Longfei 已提交
952
  }
Y
Yu Yang 已提交
953
  ss << "}.";
Q
Qiao Longfei 已提交
954 955 956
  return ss.str();
}

Y
Yu Yang 已提交
957
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
958 959
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
960
                           const AttributeMap& attrs)
S
sneaxiy 已提交
961 962 963 964 965 966
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
967 968 969 970
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
971
  if (!inputs_.empty() || !outputs_.empty()) {
H
hong 已提交
972 973 974
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
975 976 977 978 979

  // canonicalize attrs
  if (info_ && info_->proto_) {
    CanonicalizeScalarAttrs(*info_->proto_, &attrs_);
  }
980
  // In OperatorBase level, all attributes with VarDesc type will be considered
981 982 983 984 985 986
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
987
}
988

Q
qijun 已提交
989 990
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
991
  for (auto& o : inputs_) {
Q
qijun 已提交
992 993 994 995 996 997
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
1008
  auto& info = Info();
Y
Yu Yang 已提交
1009 1010

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
1011
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
1021 1022
}

1023
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
1024
  if (info_ == nullptr || info_->proto_ == nullptr) return;
1025

S
sneaxiy 已提交
1026
  for (auto& in : info_->Proto().inputs()) {
1027
    if (!in.dispensable() && !in.extra()) {
1028
      PADDLE_ENFORCE_NE(
1029 1030 1031 1032
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
1033
    }
1034 1035
  }

S
sneaxiy 已提交
1036
  for (auto& out : info_->Proto().outputs()) {
1037
    if (!out.dispensable() && !out.extra() && !out.intermediate()) {
1038
      PADDLE_ENFORCE_NE(
1039 1040 1041 1042
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
1043
    }
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
1059

1060 1061
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
1062 1063
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
1064 1065
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
1066
  } else {
1067
    PADDLE_THROW(platform::errors::InvalidArgument(
1068
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1069
        ToTypeName(var.Type())));
Q
QI JUN 已提交
1070 1071 1072
  }
}

1073
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
1074 1075
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
1076 1077
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
1078
  } else {
1079
    PADDLE_THROW(platform::errors::InvalidArgument(
1080
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1081
        ToTypeName(var->Type())));
Q
QI JUN 已提交
1082 1083 1084
  }
}

1085 1086 1087 1088 1089 1090 1091 1092
OperatorWithKernel::OperatorWithKernel(const std::string& type,
                                       const VariableNameMap& inputs,
                                       const VariableNameMap& outputs,
                                       const AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

OperatorWithKernel::~OperatorWithKernel() = default;

1093
bool ExecutionContext::HasInput(const std::string& name) const {
1094
  auto* var = InputVar(name);
1095 1096 1097
  return var != nullptr;
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

1112
bool ExecutionContext::HasOutput(const std::string& name) const {
1113
  auto* var = OutputVar(name);
1114 1115 1116
  return var != nullptr;
}

X
Xin Pan 已提交
1117
const Variable* ExecutionContext::InputVar(const std::string& name) const {
1118 1119
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
1120 1121 1122
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

1123
  PADDLE_ENFORCE_LE(
1124 1125
      it->second.size(),
      1UL,
1126
      platform::errors::InvalidArgument(
1127
          "Operator %s's input %s should contain only one variable.",
1128 1129
          op_.Type(),
          name));
X
Xin Pan 已提交
1130 1131 1132
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
1133
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
1134 1135 1136
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

1137
  PADDLE_ENFORCE_LE(
1138 1139
      it->second.size(),
      1UL,
1140 1141
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
1142 1143
          op_.Type(),
          name));
X
Xin Pan 已提交
1144 1145 1146
  return it->second.empty() ? nullptr : it->second[0];
}

1147
template <>
1148 1149
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
1150 1151
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
1152
  auto vars = MultiInputVar(name);
1153
  if (vars.empty()) {
X
Xin Pan 已提交
1154 1155
    return {};
  }
1156
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
1157
  res.reserve(vars.size());
1158 1159 1160
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1161
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
1162
                   if (var == nullptr) return nullptr;
1163 1164 1165 1166 1167 1168 1169 1170
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
1171 1172 1173 1174
                 });
  return res;
}

1175
template <>
1176
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
1177
    const std::string& name) const {
H
hong 已提交
1178 1179
  auto vars = MultiOutputVar(name);

1180
  if (vars.empty()) {
1181 1182
    return {};
  }
1183
  std::vector<phi::DenseTensor*> res;
1184
  res.reserve(vars.size());
1185 1186 1187
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1188
                 [&](Variable* var) -> phi::DenseTensor* {
1189
                   return var == nullptr ? nullptr
1190
                                         : var->GetMutable<phi::DenseTensor>();
1191
                 });
1192 1193 1194
  return res;
}

Y
Yu Yang 已提交
1195
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
1196
  // check in new Function kernel first
1197
  bool has_phi_kernel = false;
1198
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
1199
  auto kernel_key_map =
1200
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
1201
  for (auto& kernel : kernel_key_map) {
1202
    has_phi_kernel = true;
1203
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
1204 1205 1206 1207
      return true;
    }
  }

Y
Yu Yang 已提交
1208 1209
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
1223 1224 1225
      return true;
    }
  }
H
hong 已提交
1226

Y
Yu Yang 已提交
1227 1228 1229
  return false;
}

1230
struct OperatorWithKernel::CacheImpl {
1231
  static const char kNotAllowInferShapeCahce[];
1232
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
1233 1234 1235 1236 1237 1238 1239
                     RuntimeInferShapeContext* infer_shape_ctx,
                     const std::vector<phi::DenseTensor*>& tensors,
                     bool not_allow_infer_shape_cache)
      : kernel_ctx_(kernel_ctx),
        infer_shape_ctx_(infer_shape_ctx),
        tensors_(tensors),
        not_allow_infer_shape_cache_(not_allow_infer_shape_cache) {}
1240 1241 1242 1243 1244 1245

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
  bool NeedInferShape() {
    if (not_allow_infer_shape_cache_) return true;

    bool ret{false};
    if (last_ddims_.empty() || tensors_.empty()) ret = true;
    if (!ret) {
      CHECK_EQ(last_ddims_.size(), tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        if (tensors_[i]->dims() != last_ddims_[i]) {
          ret = true;
          break;
        }
      }
    }
    if (ret) {
      last_ddims_.resize(tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        last_ddims_[i] = tensors_[i]->dims();
      }
    }
    VLOG(3) << "need infer shape is " << ret;
    return ret;
  }

1270 1271 1272
 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
1273 1274 1275
  std::vector<phi::DenseTensor*> tensors_;
  bool not_allow_infer_shape_cache_;
  std::vector<phi::DDim> last_ddims_;
1276
};
1277 1278
const char OperatorWithKernel::CacheImpl::kNotAllowInferShapeCahce[] =
    "@NOT_ALLOW_INFERSHAPE_CACHE@";
1279

1280 1281
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1282
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1283 1284 1285
  if (tensor.memory_size() == 0) {
    return;
  }
1286 1287
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1288 1289
    return;
  }
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1302 1303
}

1304 1305 1306 1307
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1308 1309
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1322 1323
          op_kernels.begin(),
          op_kernels.end(),
1324 1325 1326 1327 1328 1329 1330
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
Q
QingshuChen 已提交
1354 1355 1356 1357
                   paddle::platform::is_xpu_support_op(
                       type_,
                       framework::TransToPhiDataType(
                           kern_pair.first.data_type_));
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
bool OperatorWithKernel::SupportCustomDevice() const {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return platform::is_custom_place(
                        phi::TransToPhiPlace(kern_pair.first.backend()));
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_custom_place(kern_pair.first.place_);
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportCustomDevice() when not "
      "compiled with "
      "CustomDevice support."));
  return false;
#endif
}

1405
bool OperatorWithKernel::SupportsMKLDNN(const phi::DataType data_type) const {
1406 1407 1408 1409 1410
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1411 1412
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
1413
                           kern_pair.first.dtype() == data_type;
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
1429 1430
                   kern_pair.first.data_type_ ==
                       paddle::framework::TransToProtoVarType(data_type);
1431 1432
          });
    }
1433
  }
1434 1435
}

1436
bool OperatorWithKernel::SupportsCUDNN(const phi::DataType data_type) const {
1437 1438
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
1439 1440 1441 1442 1443 1444 1445
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPUDNN &&
                           kern_pair.first.dtype() == data_type;
                  });
1446 1447 1448 1449 1450 1451 1452 1453
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
1454 1455
      proto::VarType::Type fluid_data_type =
          framework::TransToProtoVarType(data_type);
1456 1457 1458
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
1459
          [fluid_data_type](OpKernelMap::const_reference kern_pair) {
1460 1461
            return platform::is_gpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kCUDNN &&
1462
                   kern_pair.first.data_type_ == fluid_data_type;
1463 1464 1465 1466 1467
          });
    }
  }
}

1468
bool OperatorWithKernel::SupportsKernelType(
1469
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1470 1471
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1472 1473 1474 1475 1476
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1477
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1478
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1479 1480
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1481 1482
  }
#endif
1483 1484 1485 1486 1487

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
1488
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1489
            type_, framework::TransToPhiDataType(kernel_type.data_type_));
1490 1491 1492 1493 1494 1495 1496 1497 1498
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1499 1500
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1501 1502 1503
  }
#endif

1504
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1505 1506 1507 1508 1509
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1510
#ifdef PADDLE_WITH_MKLDNN
1511
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1512 1513 1514
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
1515
    tmp_kernel_type.data_layout_ = framework::DataLayout::ONEDNN;
1516 1517 1518 1519
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1520 1521 1522 1523 1524 1525 1526 1527
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kCUDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1528
  return kernel_iter != kernels.end();
1529 1530
}

1531
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
1532
                                         phi::DataType data_type) const {
1533
  return ctx.HasAttr("use_mkldnn") && ctx.Attr<bool>("use_mkldnn") &&
1534 1535
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1536 1537
}

1538 1539 1540 1541 1542
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
  return this->CanMKLDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1543
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
1544
                                        phi::DataType data_type) const {
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
  bool use_cudnn = ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn") &&
                   paddle::platform::is_gpu_place(ctx.GetPlace());

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
    use_cudnn &= (dev_ctx.cudnn_handle() != nullptr);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#if defined(PADDLE_WITH_CUDA)
1556
  if (use_cudnn && data_type == phi::DataType::BFLOAT16) {
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
    PADDLE_ENFORCE_GE(
        platform::DnnVersion(),
        8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA

  return use_cudnn && this->SupportsCUDNN(data_type);
}

1568 1569 1570 1571 1572
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                                        proto::VarType::Type data_type) const {
  return this->CanCUDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1573 1574 1575 1576 1577 1578 1579
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1580
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1581 1582
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1583
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1584
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1585 1586
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
template <typename T>
bool HasSameTensorType(phi::TensorBase* phi_tensor, Variable* var) {
  if (phi_tensor == nullptr && var == nullptr) {
    return true;
  } else if (phi_tensor != nullptr && var != nullptr) {
    if (T::classof(phi_tensor) && var->IsType<T>()) {
      return true;
    }
  }
  return false;
}

// TODO(YuanRisheng): We need collect all `need_prepare_phi_data_`
// into this function.
void OperatorWithKernel::CheckWhetherPreparePhiData(
    const VariableNameMap& innames,
    const VariableNameMap& outnames,
    const Scope& scope) const {
  if (run_phi_kernel_ && impl_ != nullptr) {
1606 1607 1608 1609 1610 1611 1612 1613
    const auto& phi_kernel_context = impl_->getKernelContext();
    size_t phi_tensor_index = 0;
    // Check each tensor in KernelContext, if there is a tensor that has
    // different type with variable. The PhiKernelContext need be reconstructed.
    // We use kernel_signature_'s output to retrieve tensor. Because the tensor
    // in phi_kernel_context stored in the order of kernel_signature_'s output.
    if (phi_kernel_context->OutputsSize() >= phi_tensor_index ||
        kernel_signature_ == nullptr) {
1614 1615 1616
      need_prepare_phi_data_ = true;
      return;
    }
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

    const auto& phi_output_names = kernel_signature_->output_names;
    for (auto& phi_output_name : phi_output_names) {
      const auto& iter = outnames.find(phi_output_name);
      if (iter != outnames.end()) {
        for (auto& var_name : iter->second) {
          auto var_output = scope.FindVar(var_name);
          auto phi_output =
              phi_kernel_context->MutableOutputAt<phi::TensorBase>(
                  phi_tensor_index);
          if (phi_output == nullptr) {
            continue;
          }
          if (!(HasSameTensorType<phi::DenseTensor>(phi_output, var_output) ||
                HasSameTensorType<phi::SparseCooTensor>(phi_output,
                                                        var_output) ||
                HasSameTensorType<framework::Strings>(phi_output,
                                                      var_output))) {
            need_prepare_phi_data_ = true;
          }
          phi_tensor_index++;
        }
      }
    }
1641 1642 1643
  }
}

L
luotao1 已提交
1644 1645
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1646 1647
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1648 1649 1650
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1651
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1652
    all_kernels_must_compute_runtime_shape_ = true;
C
csy0225 已提交
1653
  const Scope* cur_scope = &scope;
1654
  CheckWhetherPreparePhiData(Inputs(), Outputs(), scope);
1655
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1656 1657
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1658 1659
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
1660
    if (!all_kernels_must_compute_runtime_shape_ && impl_->NeedInferShape()) {
1661
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
1662
    }
1663
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1664
  } else {
C
csy0225 已提交
1665
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
1666
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
C
csy0225 已提交
1667 1668 1669 1670
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1671
    }
1672
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1673 1674 1675 1676 1677 1678
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1679
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1680
  bool fallback_to_cpu = false;
1681
  phi::KernelKey phi_cpu_kernel_key;
1682
  auto* dev_ctx = pool.Get(place);
1683 1684 1685 1686
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
H
HongyuJia 已提交
1687
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1688

1689 1690 1691 1692 1693 1694
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1695 1696 1697 1698 1699
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1700 1701
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1702
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1703
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1704 1705 1706 1707 1708 1709
      if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
        kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
      } else {
        kernel_signature_.reset(new phi::KernelSignature(
            std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      }
1710

1711 1712
      VLOG(6) << *kernel_signature_.get();
      phi_kernel_name = kernel_signature_->name;
1713 1714 1715
      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);
1716 1717 1718 1719 1720 1721 1722
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1723
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1724
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1739
                  << phi_kernel_name
1740
                  << ", using_kernel_key:" << *kernel_type_.get();
1741
          auto try_phi_kernel_key =
1742
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1743 1744
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1745 1746
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1747
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1748 1749 1750
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1751
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1752 1753 1754 1755
          }
        }
      }
#endif
1756 1757
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1758
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1759
              phi_kernel_name, phi_kernel_key)));
1760

1761
      if (phi_kernel_->IsValid()) {
1762
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
1763 1764
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1765
      } else {
1766 1767
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `"
                << phi_kernel_name << "` not found.";
1768
      }
1769
    } else {
1770
      phi_kernel_name = kernel_signature_->name;
1771
// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
1772
// LibraryType::kMKLDNN and data_layout_ = DataLayout::ONEDNN. But the default
1773
// values are kPlain, so we need to modify the library_type and data_layout_
1774 1775 1776 1777
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1778
#ifdef PADDLE_WITH_MKLDNN
1779 1780
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1781 1782
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
1783
        kernel_type_->data_layout_ = framework::DataLayout::ONEDNN;
1784 1785 1786
      }
#endif

1787 1788 1789 1790 1791 1792
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (this->CanCUDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kCUDNN;
      }
#endif

1793 1794 1795
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1796 1797 1798 1799
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1800
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1801
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1815
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1816
                  << phi_kernel_name
1817
                  << ", using_kernel_key:" << *kernel_type_.get();
1818
          auto try_phi_kernel_key =
1819
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1820 1821
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1822
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1823
            VLOG(3) << "modify XPU KP kernel in static graph: "
1824
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1825 1826 1827
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1828
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1829 1830 1831 1832
          }
        }
      }
#endif
1833
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1834
    }
1835 1836 1837 1838

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1839
#if defined(PADDLE_WITH_XPU)
1840 1841
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
Q
QingshuChen 已提交
1842 1843
        !paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1844
#endif
1845 1846 1847 1848
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
1849
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1850
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1851 1852 1853 1854 1855 1856
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1857 1858 1859 1860 1861 1862
    bool in_custom_back_list = false;
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    in_custom_back_list =
        phi::backends::custom_device::is_in_custom_black_list(phi_kernel_name);
#endif
    if (phi_kernel_->IsValid() && !in_custom_back_list
1863
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1864 1865
        && !is_xpu_unsupport
#endif
1866 1867 1868
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1869
    ) {
1870
      run_phi_kernel_ = true;
1871 1872 1873
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1874 1875 1876 1877 1878 1879 1880 1881 1882

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif
1883 1884 1885
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1886
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1887
          || is_xpu_unsupport
1888
#endif
1889 1890
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
1891 1892 1893
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
          || in_custom_back_list
1894
#endif
1895
      ) {
1896
        fallback_to_cpu = true;
1897 1898 1899
        if (in_custom_back_list) {
          VLOG(3) << "fluid in black list: " << phi_kernel_name;
        }
1900
        phi_cpu_kernel_key = FallBackToCpu(phi_kernel_key, *this);
1901
        phi_kernel_.reset(
1902
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1903
                phi_kernel_name, phi_cpu_kernel_key)));
1904 1905

        dev_ctx = pool.Get(platform::CPUPlace());
1906
        if (phi_kernel_->IsValid()) {
1907
          VLOG(6) << "Static graph mode PrepareImpl - kernel name: "
1908 1909
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1910
          run_phi_kernel_ = true;
1911 1912
        }
      }
1913 1914
    }
  }
1915
  if (!run_phi_kernel_) {
1916 1917
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1918
      dev_ctx = pool.Get(kernel_type_->place_);
1919
    }
1920 1921
  }

Y
yuyang18 已提交
1922 1923
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1924 1925
  Scope* transfer_scope = nullptr;
  {
1926
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1927
                                       platform::TracerEventType::OperatorInner,
1928 1929
                                       1,
                                       platform::EventRole::kInnerOp);
1930
    if (need_prepare_data_) {
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
      if (fallback_to_cpu) {
        transfer_scope = PrepareData(scope,
                                     phi_cpu_kernel_key,
                                     &transfered_inplace_vars,
                                     runtime_ctx,
                                     dev_ctx->GetPlace());
      } else {
        transfer_scope = PrepareData(
            scope,
            framework::TransOpKernelTypeToPhiKernelKey(*kernel_type_),
            &transfered_inplace_vars,
            runtime_ctx,
            dev_ctx->GetPlace());
      }
1945
    }
1946
  }
Y
yuyang18 已提交
1947 1948 1949 1950
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1951
  if (!all_kernels_must_compute_runtime_shape_) {
1952
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1953
                                       platform::TracerEventType::OperatorInner,
1954 1955
                                       1,
                                       platform::EventRole::kInnerOp);
1956
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1957
    this->Info().infer_shape_(&infer_shape_ctx);
1958 1959
    record_event.End();
    platform::RecordOpInfoSupplement(
1960
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx, Id());
1961
  }
1962 1963 1964 1965 1966

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1967 1968
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1969
  {
1970
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1971
                                       platform::TracerEventType::OperatorInner,
1972 1973
                                       1,
                                       platform::EventRole::kInnerOp);
1974 1975
    if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                               phi::KernelRegisteredType::FUNCTION) {
1976
      phi::KernelContext phi_kernel_context;
1977 1978
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
        // TODO(inference): Now we only suppor dense_tensor cache, we may be
        // support ScalarTensor, SparseTensor in future.
        bool all_dense_tensor_input_{true};
        for (auto& iter : Inputs()) {
          for (auto& name : iter.second) {
            all_dense_tensor_input_ &=
                scope.FindVar(name)->IsType<phi::DenseTensor>();
          }
        }

        std::vector<phi::DenseTensor*> tensors;
        if (all_dense_tensor_input_) {
          for (auto& iter : Inputs()) {
            for (auto& name : iter.second) {
              auto* t = scope.FindVar(name)->GetMutable<phi::DenseTensor>();
              tensors.push_back(t);
            }
          }
        }

        impl_.reset(
2000
            new CacheImpl(new phi::KernelContext(),
2001 2002 2003
                          new RuntimeInferShapeContext(*this, *runtime_ctx),
                          tensors,
                          HasAttr(CacheImpl::kNotAllowInferShapeCahce)));
2004
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
2005
        (*phi_kernel_)(impl_->getKernelContext());
2006
      } else {
2007
        phi::KernelContext phi_kernel_context;
2008 2009
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
2010 2011
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
2012
      }
2013 2014 2015 2016 2017
    } else if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                                      phi::KernelRegisteredType::STRUCTURE) {
      ExecutionContext execution_context(
          *this, exec_scope, *dev_ctx, *runtime_ctx);
      (*phi_kernel_)(&execution_context);
2018 2019 2020 2021
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
2022 2023 2024
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
2025
  }
D
dzhwinter 已提交
2026

Y
yuyang18 已提交
2027
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
2028
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
2029
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
2030
  }
2031 2032 2033 2034 2035 2036 2037

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

2038 2039 2040 2041 2042 2043 2044 2045
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
2046

D
dzhwinter 已提交
2047
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
2048
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
2049
    dev_ctx->Wait();
2050 2051
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
2052 2053
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
2054
  }
C
chengduoZH 已提交
2055 2056

  if (FLAGS_check_nan_inf) {
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
    try {
      framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
    } catch (...) {
      const std::vector<std::string>* callstack = nullptr;
      auto attrs = Attrs();
      auto iter =
          attrs.find(OpProtoAndCheckerMaker::OpCreationCallstackAttrName());
      if (iter != attrs.end()) {
        callstack = &PADDLE_GET_CONST(std::vector<std::string>, iter->second);
        if (callstack->empty()) callstack = nullptr;
      }
      std::ostringstream sout;
      if (callstack) {
        if (FLAGS_call_stack_level > 1) {
          sout << "\n\n  Compile Traceback (most recent call last):";
        } else {
          sout << "In user code:\n";
        }
        for (auto& line : *callstack) {
          sout << "\n  " << line;
        }
      }
      std::cout << sout.str() << std::endl;
      std::rethrow_exception(std::current_exception());
    }
C
chengduoZH 已提交
2082
  }
2083 2084 2085 2086

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
C
csy0225 已提交
2087 2088
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
2089
  }
Q
Qiao Longfei 已提交
2090
}
X
Xin Pan 已提交
2091

2092 2093
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
2094 2095 2096
  phi::KernelKey phi_kernel_key = this->GetExpectedKernelType(ctx);
  auto expected_kernel_key =
      framework::TransPhiKernelKeyToOpKernelType(phi_kernel_key);
2097 2098 2099

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
2100
// data_layout_ of expected_kernel_key need to be adjusted. There are three
2101
// statements in if condition:
2102 2103 2104
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
2105
#ifdef PADDLE_WITH_MKLDNN
2106
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
2107 2108
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
2109
    expected_kernel_key.data_layout_ = framework::DataLayout::ONEDNN;
2110 2111 2112
  }
#endif

2113 2114 2115 2116 2117 2118
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN;
  }
#endif

2119 2120 2121
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
2132 2133 2134
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
2135 2136
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2137
      if (SupportGPU()) {
2138
        auto& dev_ctx = ctx.device_context();
2139
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2140 2141
      }
#endif
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
2161 2162 2163 2164 2165 2166
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      if (SupportCustomDevice()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
2167
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
2168 2169
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
2196 2197 2198
      }
    }
  }
2199 2200 2201 2202 2203 2204

  if (platform::places_are_same_class(expected_kernel_key.place_,
                                      ctx.GetPlace())) {
    expected_kernel_key.place_ = ctx.GetPlace();
  }

C
cc 已提交
2205 2206
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
2207 2208 2209
  return expected_kernel_key;
}

2210
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2211
    const ExecutionContext& ctx) const {
2212 2213 2214 2215 2216 2217 2218
  std::string phi_kernel_name;
  if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
    kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
  } else {
    kernel_signature_.reset(
        new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  }
2219
  VLOG(6) << *kernel_signature_.get();
2220
  phi_kernel_name = kernel_signature_->name;
2221 2222 2223
  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2224 2225 2226
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2227

2228
  if (phi_kernel_->IsValid()) {
2229 2230
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
            << phi_kernel_name << " | kernel key: " << phi_kernel_key
2231
            << " | kernel: " << *phi_kernel_;
2232
  } else {
2233
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `" << phi_kernel_name
2234 2235
            << "` not found.";
  }
2236
  return phi_kernel_key;
2237 2238 2239 2240 2241 2242 2243
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2244 2245
      kernels_iter,
      all_op_kernels.end(),
2246
      platform::errors::Unimplemented(
2247 2248 2249 2250 2251 2252
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2253 2254

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2255

L
Liu Yiqun 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2265
#endif
2266 2267

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2268
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2269
      (kernel_iter == kernels.end() ||
Q
QingshuChen 已提交
2270 2271 2272
       !paddle::platform::is_xpu_support_op(
           type_,
           framework::TransToPhiDataType(expected_kernel_key.data_type_)))) {
2273
    VLOG(3) << "fluid missing XPU kernel: " << type_
2274 2275 2276 2277 2278
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2279
#endif
L
Liu-xiandong 已提交
2280 2281

#ifdef PADDLE_WITH_XPU_KP
2282 2283 2284
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
2285
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
2286 2287
            type_,
            framework::TransToPhiDataType(expected_kernel_key.data_type_));
2288 2289 2290
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2291
      VLOG(3) << "fluid xpu_kp using rt mode ";
2292 2293
    }
    if (use_xpu_kp_kernel_debug) {
2294
      VLOG(3) << "fluid xpu_kp using debug mode ";
2295 2296 2297
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2298 2299
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2300 2301
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2302
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2303
      // if the fluid do not register related kernel, it can't work and have
2304 2305 2306 2307 2308 2309 2310
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2311
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2312 2313
                << ", using_kernel_key:" << expected_kernel_key;
      }
2314
    }
Q
QingshuChen 已提交
2315 2316
    bool is_xpu_unsupport = (!paddle::platform::is_xpu_support_op(
        type_, framework::TransToPhiDataType(expected_kernel_key.data_type_)));
2317 2318
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2319
      VLOG(3) << "fluid missing XPU kernel: " << type_
2320 2321 2322 2323 2324
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2325 2326 2327
  }
#endif

A
Allen Guo 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
张春乔 已提交
2338

2339 2340 2341 2342 2343 2344 2345
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2346 2347 2348
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2349
#endif
2350 2351 2352 2353 2354 2355
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2356

2357 2358 2359 2360 2361
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2362 2363
}

Y
yuyang18 已提交
2364
void OperatorWithKernel::TransferInplaceVarsBack(
2365 2366
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2367 2368
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2369
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2370
    auto* origin_var = scope.FindVar(var_name);
2371 2372 2373
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2374
    auto* original_tensor =
C
chengduo 已提交
2375
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2376
    auto* var = transfer_scope.FindVar(var_name);
2377 2378 2379
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2380
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
2381 2382 2383 2384
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2414
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2434
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2445
      phi::DenseTensor out;
2446 2447 2448 2449 2450 2451
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2452
Scope* OperatorWithKernel::PrepareData(
2453
    const Scope& scope,
2454
    const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
2455
    std::vector<std::string>* transfered_inplace_vars,
2456 2457
    RuntimeContext* ctx,
    const phi::Place& place) const {
Y
yuyang18 已提交
2458
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2459

2460
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2461 2462 2463 2464
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2465 2466
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2467 2468 2469
    }
  }

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
  auto has_infer_varkernel_fn =
      (run_phi_kernel_ && phi_kernel_->get_kerneltype_forvar_fn_ != nullptr);
  phi::AttributeMap infer_attrs{};
  auto fluid_attrs = Attrs();
  phi::GetKernelTypeForVarContext infer_varkernel_context =
      BuildGetKernelTypeForVarContext(expected_kernel_key,
                                      fluid_attrs,
                                      &infer_attrs,
                                      has_infer_varkernel_fn);

2480 2481 2482 2483 2484 2485 2486 2487 2488
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2489

Y
yuyang18 已提交
2490
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2491
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2492 2493 2494
        continue;
      }

C
chengduo 已提交
2495
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2496

2497
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2498 2499 2500 2501 2502 2503 2504
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
2505
        // oneDNN shape of Var may differ from kNHWC Var
2506 2507
        // In such situation corressponding resized Var
        // has to be created and registered
2508
        if ((tensor_in->layout() == DataLayout::ONEDNN) &&
2509
            (var->IsType<phi::DenseTensor>() == true) &&
2510
            (expected_kernel_key.layout() != DataLayout::ONEDNN) &&
2511 2512
            (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
             DataLayout::kNHWC) &&
2513
            (tensor_in->dims().size() >= 3)) {
2514
          // Mixed execution : oneDNN and GPU is not supported!
2515 2516 2517 2518
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2519
          in_vars->at(i) = trans_var;
2520
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2521
          out->Resize(tensor_in->dims());
2522
          phi::funcs::MatchShapeToLayout(
2523
              out, tensor_in->layout(), DataLayout::kNHWC);
2524
          VLOG(7) << "Created reshaped dummy input based on oneDNN "
2525
                     "phi::DenseTensor , "
2526
                     "but kNHWC layout"
2527
                  << in_name << " in Operator " << type_;
2528
        } else {
2529 2530
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2531 2532 2533 2534 2535
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2536 2537 2538 2539
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2540 2541
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
2542 2543 2544 2545 2546 2547 2548
      if (has_infer_varkernel_fn) {
        infer_varkernel_context.SetVarName(const_cast<std::string*>(&in_name));
        infer_varkernel_context.SetDenseTensor(
            const_cast<phi::DenseTensor*>(tensor_in));
        kernel_type_for_var =
            phi_kernel_->get_kerneltype_forvar_fn_(&infer_varkernel_context);
      }
2549
      bool need_trans_dtype =
2550
          NeedTransformDataType(expected_kernel_key, kernel_type_for_var);
2551
      bool need_trans_layout = NeedTransformLayout(
2552
          kernel_type_for_var.layout(), expected_kernel_key.layout());
2553 2554
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
2555 2556
            backends_are_same_class(kernel_type_for_var.backend(),
                                    expected_kernel_key.backend())) {
2557 2558 2559
          continue;
        }
      }
Y
yuyang18 已提交
2560

2561
      std::unique_ptr<phi::KernelKey> new_expected_kernel_key = nullptr;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
      if (run_phi_kernel_) {
        if (phi_kernel_->GetKernelRegisteredType() ==
            phi::KernelRegisteredType::STRUCTURE) {
          if (!backends_are_same_class(kernel_type_for_var.backend(),
                                       expected_kernel_key.backend())) {
            new_expected_kernel_key =
                std::make_unique<phi::KernelKey>(expected_kernel_key.backend(),
                                                 expected_kernel_key.layout(),
                                                 expected_kernel_key.dtype());
          }
2572
        } else if (in_def != nullptr &&  // KernelRegisteredType is Function
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
                   in_def->backend != phi::Backend::ALL_BACKEND) {
          auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
          if ((in_def->backend != tensor_backend &&
               !(in_def->backend == phi::Backend::GPUDNN &&
                 tensor_backend == phi::Backend::GPU) &&
               !(in_def->backend == phi::Backend::KPS &&
                 tensor_backend == phi::Backend::XPU) &&
               !(in_def->backend == phi::Backend::ONEDNN &&
                 tensor_backend == phi::Backend::CPU)) ||
              tensor_in->place().GetType() == AllocationType::GPUPINNED) {
            new_expected_kernel_key =
                std::make_unique<phi::KernelKey>(in_def->backend,
                                                 expected_kernel_key.layout(),
                                                 expected_kernel_key.dtype());
          }
2588 2589 2590 2591 2592 2593 2594
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2595 2596
      }

M
minqiyang 已提交
2597
      VLOG(3) << "Transform Variable " << var_name << " from "
2598 2599 2600
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2601

H
HongyuJia 已提交
2602 2603 2604
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2605
      // We use a thread_local cache to fix that issue, the key in the cache is
2606 2607 2608 2609 2610
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2611 2612
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2613
      // variables, that behavior a lot different.
2614 2615 2616 2617 2618 2619
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2620 2621
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
2622 2623 2624
          if (kernel_type_for_var.backend() == phi::Backend::GPU ||
              kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
              new_expected_kernel_key->backend() == phi::Backend::GPU ||
2625 2626 2627
              new_expected_kernel_key->backend() == phi::Backend::GPUDNN ||
              kernel_type_for_var.backend() == phi::Backend::XPU ||
              new_expected_kernel_key->backend() == phi::Backend::XPU) {
C
csy0225 已提交
2628
            new_scope = TryCreateTransferScope(
2629 2630 2631
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
2632 2633 2634
        } else if (kernel_type_for_var.backend() == phi::Backend::GPU ||
                   kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
                   expected_kernel_key.backend() == phi::Backend::GPU ||
2635 2636 2637
                   expected_kernel_key.backend() == phi::Backend::GPUDNN ||
                   kernel_type_for_var.backend() == phi::Backend::XPU ||
                   expected_kernel_key.backend() == phi::Backend::XPU) {
C
csy0225 已提交
2638
          new_scope = TryCreateTransferScope(
2639 2640 2641
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2642
      }
2643

2644
      if (!new_scope) {
Y
yuyang18 已提交
2645 2646
        new_scope = &scope.NewScope();
      }
C
csy0225 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2657 2658

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2659
      auto* trans_var = new_scope->Var(var_name);
2660
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2661 2662 2663 2664 2665 2666 2667

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2668
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2678
      phi::DenseTensor out;
2679 2680 2681 2682 2683 2684 2685 2686 2687
      TransformData(
          new_expected_kernel_key ? *new_expected_kernel_key
                                  : expected_kernel_key,
          kernel_type_for_var,
          *tensor_in,
          &out,
          new_expected_kernel_key
              ? phi::TransToPhiPlace(new_expected_kernel_key->backend())
              : place);
Y
yuyang18 已提交
2688 2689
      SetTensorToVariable(*var, out, trans_var);
    }
2690 2691
  };

2692 2693
  if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                             phi::KernelRegisteredType::FUNCTION) {
2694
    const auto& input_names = kernel_signature_->input_names;
2695
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
2712 2713 2714 2715 2716 2717 2718 2719 2720

      phi::TensorArgDef in_def = input_defs.at(i);
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      // When the backend of input tensor arg_def is CUSTOM, we need to set it
      // to the actual backend by expected_kernel_key.
      if (in_def.backend == phi::Backend::CUSTOM) {
        in_def.SetBackend(expected_kernel_key.backend());
      }
#endif
2721 2722
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2739 2740 2741 2742 2743 2744 2745 2746 2747
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2748
  }
L
Leo Chen 已提交
2749

C
csy0225 已提交
2750 2751 2752 2753
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
2754 2755
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
C
csy0225 已提交
2756

W
wenbin 已提交
2757 2758 2759 2760
  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
C
csy0225 已提交
2761
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2762 2763
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2764 2765 2766

  return new_scope;
}
Q
Qiao Longfei 已提交
2767

2768
void OperatorWithKernel::ParseInputDataType(
2769 2770
    const Variable* var,
    const std::string& name,
2771 2772
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2773 2774 2775
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2776 2777
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2778 2779
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2780 2781 2782 2783
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2799 2800
    const std::vector<Variable*>& vars,
    const std::string& name,
2801
    proto::VarType::Type* data_type) const {
2802
  proto::VarType::Type default_data_type =
2803 2804 2805 2806
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2807 2808 2809
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2810 2811
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
R
RedContritio 已提交
2827
                           "consistent or register GetExpectedKernelType. The "
2828 2829 2830 2831 2832 2833 2834
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2835
      } else if (var->IsType<LoDTensorArray>()) {
2836 2837 2838 2839
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2840 2841
          }
        }
2842 2843
      }
      if (t != nullptr) {
2844 2845 2846 2847 2848 2849 2850
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2851 2852
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2853 2854 2855 2856
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
R
RedContritio 已提交
2857
                           "consistent or register GetExpectedKernelType. The "
2858 2859
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2860 2861 2862
                           Type(),
                           name,
                           DataTypeToString(tmp),
2863
                           DataTypeToString(*data_type)));
2864 2865 2866 2867 2868 2869
        *data_type = tmp;
      }
    }
  }
}

2870
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2871
    const ExecutionContext& ctx) const {
2872 2873 2874
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2875

2876
  for (auto* name : ctx.InNameList()) {
2877 2878 2879 2880 2881
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2882
  }
2883
  PADDLE_ENFORCE_NE(
2884 2885
      data_type,
      dafault_data_type,
2886 2887
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2888 2889 2890 2891 2892 2893 2894 2895
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2896 2897 2898 2899 2900
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2901
  PADDLE_ENFORCE_NE(
2902 2903
      data_type,
      dafault_data_type,
2904 2905
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2906
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2907
          "LoDTensorArray.",
2908 2909
          name,
          Type()));
2910
  return data_type;
Y
Yu Yang 已提交
2911
}
2912

2913
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2926 2927 2928
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2929 2930
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2931 2932 2933 2934
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2935 2936 2937 2938 2939 2940 2941
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2942
      platform::errors::InvalidArgument(
2943 2944 2945 2946 2947
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2959 2960
    const ExecutionContext& ctx,
    const std::string& name1,
2961 2962 2963 2964 2965 2966
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2967 2968
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2969 2970 2971 2972 2973 2974 2975

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2976
phi::KernelKey OperatorWithKernel::GetExpectedKernelType(
2977
    const ExecutionContext& ctx) const {
2978
  return phi::KernelKey(IndicateDataType(ctx), ctx.GetPlace());
2979 2980
}

2981
phi::KernelKey OperatorWithKernel::GetKernelTypeForVar(
2982
    const std::string& var_name,
2983
    const phi::DenseTensor& tensor,
2984
    const phi::KernelKey& expected_kernel_type) const {
2985 2986 2987 2988
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
2989
  if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
2990
      (tensor.layout() != phi::DataLayout::ONEDNN) &&
2991 2992
      phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
          phi::DataLayout::kNHWC) {
2993 2994
    return phi::KernelKey(
        tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
2995 2996
  }
#endif
2997 2998
  return phi::KernelKey(
      tensor.place(), tensor.layout(), expected_kernel_type.dtype());
2999 3000
}

3001
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
3002
    const ExecutionContext& ctx) const {
3003
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
3004
  if (arg_map_fn_ == nullptr) {
3005 3006 3007 3008
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
3009 3010 3011
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
3012 3013 3014 3015
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
3016 3017
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
3018 3019
}

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

3079
void OperatorWithKernel::BuildPhiKernelContext(
3080 3081
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
3082 3083
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
3084

3085 3086 3087
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
3088

3089 3090 3091
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
3092

3093 3094 3095 3096 3097 3098 3099 3100 3101
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

3102 3103
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
3104 3105 3106
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
3107 3108
                        input_names.size(),
                        input_defs.size()));
3109

3110 3111
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
3112 3113 3114
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
3115 3116
                        output_names.size(),
                        output_defs.size()));
3117

3118 3119
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
3120 3121 3122
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
3123 3124
                        attr_names.size(),
                        attr_defs.size()));
3125
  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
3126
    auto it = ctx.inputs.find(input_names[i]);
3127 3128 3129

    // calcute the start and end index of the input tensors
    size_t start_idx =
3130
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
3131
    // deal with optional here
3132
    if ((it == ctx.inputs.end() || it->second.empty()) &&
H
hong 已提交
3133
        (input_defs[i].type_index ==
3134
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
3135
         input_defs[i].type_index ==
3136
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
3137
         input_defs[i].type_index ==
3138 3139
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
3140
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
3141
      auto end_idx = start_idx + 1;
3142 3143
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
3144

H
hong 已提交
3145 3146 3147 3148
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
3149
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
3150
      const phi::TensorBase* tensor_in = nullptr;
3151
      auto* var = ins_vector[offset];
3152 3153
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
3154
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3155 3156
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
3157
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3158 3159 3160
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3161
      } else if (var->IsType<framework::LoDTensorArray>()) {
3162
        need_prepare_phi_data_ = true;
3163 3164
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3165 3166 3167
      } else if (var->IsType<framework::Vocab>()) {
        tensor_in = &(var->Get<framework::Vocab>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3168 3169 3170
      } else if (var->IsType<framework::FeedList>()) {
        tensor_in = &(var->Get<framework::FeedList>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3171 3172 3173 3174
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
3175
      }
3176
    }
3177
    // Note: here cannot deal with vector<LoDTensorArray> input
3178
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
3179
  }
3180
  VLOG(4) << "Done inputs";
3181
  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
3182
    auto it = ctx.outputs.find(output_names[i]);
3183
    size_t start_idx =
3184
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
3185 3186

    if (it == ctx.outputs.end() || it->second.empty()) {
3187
      VLOG(4) << "Output " << output_names[i] << " not found";
H
hong 已提交
3188 3189 3190 3191
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
3192
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
3193
      auto end_idx = start_idx + 1;
3194 3195
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
3196 3197 3198 3199
      continue;
    }
    auto& outs_vector = it->second;

3200
    size_t end_idx = start_idx + outs_vector.size();
3201 3202

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
3203
      phi::TensorBase* tensor_out = nullptr;
3204
      auto* var = outs_vector[offset];
3205
      if (var) {
3206 3207
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
3208
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3209 3210
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
3211
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3212 3213 3214
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3215
        } else if (var->template IsType<framework::LoDTensorArray>()) {
3216
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
3217 3218
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
3219
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3220 3221 3222
        } else if (var->template IsType<framework::Strings>()) {
          tensor_out = var->template GetMutable<framework::Strings>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3223 3224 3225 3226 3227 3228 3229
        } else if (var->template IsType<paddle::framework::RawTensor>()) {
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (!var->IsInitialized()) {
          // The following is for RAW type of var
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3230 3231 3232 3233 3234
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
3235
      } else {
3236
        VLOG(4) << "Output " << output_names[i] << " is nullptr";
3237
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3238
      }
3239
    }
3240 3241
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
3242
  }
3243
  VLOG(4) << "Done outputs";
3244
  for (size_t i = 0; i < attr_names.size(); ++i) {
3245 3246
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
3247 3248
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
3249 3250 3251 3252 3253 3254 3255
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
3256
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3257
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
3258
              break;
3259 3260 3261 3262
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
3263
            case proto::AttrType::INT:
3264
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3265
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
3266
              break;
3267 3268 3269 3270
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
3271
            case proto::AttrType::STRING:
3272
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
3273
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
3274
              break;
3275 3276 3277 3278
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
3279 3280 3281 3282 3283
            case proto::AttrType::SCALAR:
              phi_kernel_context->EmplaceBackAttr(
                  std::move(phi::Scalar(PADDLE_GET_CONST(
                      paddle::experimental::Scalar, attr_iter->second))));
              break;
3284 3285 3286 3287 3288 3289 3290
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
3291
          need_prepare_phi_data_ = true;
3292
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
3293 3294
          phi_kernel_context->EmplaceBackAttr(
              std::move(framework::MakePhiScalarFromVar(*ins_vector.front())));
3295
        }
3296 3297 3298 3299 3300
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
3301
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3302
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
3303 3304
              break;
            case proto::AttrType::LONGS:
3305
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3306
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
3307 3308
              break;
            case proto::AttrType::INT:
3309
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3310
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
3311 3312
              break;
            case proto::AttrType::LONG:
3313
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3314
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
3315 3316 3317 3318 3319 3320 3321 3322
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
3323
          need_prepare_phi_data_ = true;
3324 3325
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
3326
            phi_kernel_context->EmplaceBackAttr(std::move(
3327
                framework::MakePhiIntArrayFromVar(*ins_vector.front())));
3328
          } else {  // ShapeTensorList
3329 3330
            phi_kernel_context->EmplaceBackAttr(
                std::move(framework::MakePhiIntArrayFromVarList(ins_vector)));
3331
          }
3332
        }
3333
        break;
3334

3335 3336
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3337 3338
            attr_iter,
            Attrs().end(),
3339 3340 3341 3342 3343 3344
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3345
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3346 3347 3348 3349 3350
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3351
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3352 3353 3354
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3355
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3356 3357 3358 3359 3360
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3361
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3362 3363 3364
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3365
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3366 3367 3368 3369 3370
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3371
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3372 3373 3374
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3375
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3376 3377 3378 3379 3380
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3381
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3382 3383 3384
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3385
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3386 3387 3388 3389 3390
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3391
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3392
          } break;
3393 3394 3395 3396 3397 3398
          case proto::AttrType::SCALARS: {
            const auto& vec = PADDLE_GET_CONST(
                std::vector<paddle::experimental::Scalar>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list{vec.begin(), vec.end()};
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
3399 3400 3401 3402
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3403 3404
                attr_names[i]));
        }
3405 3406
      } break;
      default: {
3407
        if (attr_iter == Attrs().end()) {
3408
          // TODO(chenweihang): remove this backup searching later
3409 3410 3411 3412 3413 3414 3415 3416 3417
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3418 3419
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3420
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3421
                PADDLE_GET_CONST(float, attr_iter->second));
3422
            break;
3423 3424 3425 3426
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3427
          case phi::AttributeType::INT32:
3428
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3429
                PADDLE_GET_CONST(int, attr_iter->second));
3430 3431
            break;
          case phi::AttributeType::BOOL:
3432
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3433
                PADDLE_GET_CONST(bool, attr_iter->second));
3434 3435
            break;
          case phi::AttributeType::INT64:
3436
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3437
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3438 3439
            break;
          case phi::AttributeType::INT32S:
3440
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3441
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3442
            break;
3443 3444 3445 3446
          case phi::AttributeType::BOOLS:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second));
            break;
3447 3448 3449
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3450
                    PADDLE_GET_CONST(int, attr_iter->second)));
3451
            phi_kernel_context->EmplaceBackAttr(data_type);
3452 3453
          } break;
          case phi::AttributeType::STRING:
3454
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3455
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3456 3457 3458 3459
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3460
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3461
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3462 3463 3464
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3465
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3466 3467
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3468
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3479
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3480
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3481 3482
            break;
          case phi::AttributeType::STRINGS:
3483
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3484
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3485 3486 3487 3488 3489 3490
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3491
        }
3492 3493 3494
      }
    }
  }
3495
  VLOG(4) << "Done attributes";
3496

3497 3498 3499 3500 3501 3502
// Clear All old attrs before add new attrs,
// because sometimes old attrs may be misused.
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->ClearDnnAttr();
3503
    if (!RuntimeAttrs().empty()) need_prepare_phi_data_ = true;
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
  }
#endif

  // Note(YuanRisheng): Now, we can't open code below.
  // Because some unittest run OLD dygraph and ExtraAttr is not supported in OLD
  // dygraph. So, here we use trick that dev_ctx is a global object. We can
  // store ExtraAttr in static graph and when unittest run OLD dygraph, it can
  // obtain these ExtraAttr. We can open this code when OLD dygraph is no longer
  // used.
  /*
  #if defined(PADDLE_WITH_CUDA)
    if(phi::GPUContext::classof(dev_ctx)) {
      phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
      gpu_dnn_ctx->ClearDnnAttr();
    }
  #endif
  */
3521 3522 3523 3524 3525 3526
  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3527
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3528 3529 3530 3531 3532 3533
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
S
Shuangchi He 已提交
3534
  // which increases the cost of development and understanding, so we
3535 3536 3537 3538 3539 3540 3541
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3542
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
3557
      if (it == ctx.inputs.end() || it->second.empty()) {
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3577 3578
}

Q
Qiao Longfei 已提交
3579
}  // namespace framework
L
liaogang 已提交
3580
}  // namespace paddle