modified_huber_loss_op.cc 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/modified_huber_loss_op.h"

namespace paddle {
namespace operators {

class ModifiedHuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
Qiao Longfei 已提交
25 26 27
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized.");
28

Q
Qiao Longfei 已提交
29 30
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
31

Q
Qiao Longfei 已提交
32 33 34
    PADDLE_ENFORCE_EQ(x_dims, y_dims, "The shape of X and Y must be the same.");
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "The tensor rank of X must be 2.");
    PADDLE_ENFORCE_EQ(x_dims[1], 1, "The 2nd dimension of X must be 1.");
35

Q
Qiao Longfei 已提交
36 37
    ctx->SetOutputDim("IntermediateVal", x_dims);
    ctx->SetOutputDim("Out", {x_dims[0], 1});
38 39 40 41 42 43 44 45
  }
};

class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ModifiedHuberLossOpMaker(framework::OpProto* proto,
                           framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
46 47 48 49 50 51
    AddInput("X",
             "The input tensor of modified huber loss op."
             "X is 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
             "The target labels of modified huber loss op."
             "The shape of Y is same as X. Values of Y must be 0 or 1.");
52
    AddOutput("IntermediateVal",
Y
yangyaming 已提交
53 54 55
              "Variable to save intermediate result which will be reused in "
              "backward processing.")
        .AsIntermediate();
56
    AddOutput("Out", "Classification loss for X.");
Y
yangyaming 已提交
57
    AddComment(R"DOC(
58 59
Modified huber loss is used in binary classification problem. The shape of
input X and target Y are both [N, 1] and so is the shape of output loss.
Y
yangyaming 已提交
60 61 62 63 64 65 66
Since target Y is not differentiable, cacluating gradient for Y is illegal.
The formulation of modified huber loss is:

L(y, f(x)) = max(0, 1 - yf(x))^2  for yf(x) >= -1,
             -4yf(x)              otherwise.

Make sure the values of target label Y are in {0, 1} here. The operator will
67
scale values of Y to {-1, +1} when computing losses and gradients.
Y
yangyaming 已提交
68
)DOC");
69 70 71 72 73 74 75 76
  }
};

class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
Qiao Longfei 已提交
77 78 79 80 81 82 83 84 85 86 87 88
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("IntermediateVal"),
                   "Intermediate value must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@Grad) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto intermediate_dims = ctx->GetInputDim("IntermediateVal");
    auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
89 90

    PADDLE_ENFORCE_EQ(
Q
Qiao Longfei 已提交
91
        intermediate_dims, x_dims,
92
        "The shape of X and intermediate value must be the same.");
Q
Qiao Longfei 已提交
93
    PADDLE_ENFORCE_EQ(out_grad_dims, x_dims,
94
                      "The shape of Input(Out@Grad) and X must be the same.");
95

Q
Qiao Longfei 已提交
96 97 98
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(modified_huber_loss, ops::ModifiedHuberLossOp,
            ops::ModifiedHuberLossOpMaker, modified_huber_loss_grad,
            ops::ModifiedHuberLossGradOp);

REGISTER_OP_CPU_KERNEL(
    modified_huber_loss,
    ops::ModifiedHuberLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(modified_huber_loss_grad,
                       ops::ModifiedHuberLossGradCPUKernel<float>);