test_elementwise_heaviside_op.py 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle


class TestElementwiseOp(OpTest):
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
    def setUp(self):
        self.op_type = "elementwise_heaviside"
        x = np.random.random((13, 17)).astype("float64")
        y = np.random.random((13, 17)).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.heaviside(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


class TestHeavisideBroadcast(unittest.TestCase):
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    def setUp(self):
        self.input_1 = np.random.rand(2, 100, 13, 17).astype("float32")
        self.input_2 = np.random.rand(100, 13, 17).astype("float32")
        self.input_3 = np.random.rand(100, 13, 1).astype("float32")
        self.input_4 = np.random.rand(13, 17).astype("float32")
        self.input_5 = np.random.rand(1).astype("float32")

        self.np_expected1 = np.heaviside(self.input_1, self.input_2)
        self.np_expected2 = np.heaviside(self.input_2, self.input_3)
        self.np_expected3 = np.heaviside(self.input_2, self.input_4)
        self.np_expected4 = np.heaviside(self.input_4, self.input_5)

    def test_broadcast(self):
        paddle.disable_static()
        self.tensor_1 = paddle.to_tensor(self.input_1)
        self.tensor_2 = paddle.to_tensor(self.input_2)
        self.tensor_3 = paddle.to_tensor(self.input_3)
        self.tensor_4 = paddle.to_tensor(self.input_4)
        self.tensor_5 = paddle.to_tensor(self.input_5)

        res = paddle.heaviside(self.tensor_1, self.tensor_2)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected1))

        res = paddle.heaviside(self.tensor_2, self.tensor_3)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected2))

        res = paddle.heaviside(self.tensor_2, self.tensor_4)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected3))

        res = paddle.heaviside(self.tensor_4, self.tensor_5)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected4))


class TestHeavisideAPI_float64(unittest.TestCase):
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("float64")
        self.y_np = np.random.random((13, 17)).astype("float64")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "float64"

    def test_static(self):
        for use_cuda in ([False, True]
                         if paddle.device.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
            prog = paddle.static.Program()
            with paddle.static.program_guard(prog):
98 99 100 101 102 103
                x = paddle.static.data(name=f"x_{self.dtype}",
                                       shape=[13, 17],
                                       dtype=self.dtype)
                y = paddle.static.data(name=f"y_{self.dtype}",
                                       shape=[13, 17],
                                       dtype=self.dtype)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                out = paddle.heaviside(x, y)

            exe = paddle.static.Executor(place=place)
            res = exe.run(prog,
                          feed={
                              f"x_{self.dtype}": self.x_np,
                              f"y_{self.dtype}": self.y_np
                          },
                          fetch_list=out,
                          use_prune=True)

            self.assertTrue(np.allclose(res, self.out_np))

    def test_dygraph(self):
        for use_cuda in ([False, True]
                         if paddle.device.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.disable_static(place=place)
122 123
            result = paddle.heaviside(paddle.to_tensor(self.x_np),
                                      paddle.to_tensor(self.y_np))
124 125 126 127 128

            self.assertTrue(np.allclose(result.numpy(), self.out_np))


class TestHeavisideAPI_float32(TestHeavisideAPI_float64):
129

130 131 132 133 134 135 136 137
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("float32")
        self.y_np = np.random.random((13, 17)).astype("float32")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "float32"


class TestHeavisideAPI_int64(TestHeavisideAPI_float64):
138

139 140 141 142 143 144 145 146
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("int64")
        self.y_np = np.random.random((13, 17)).astype("int64")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "int64"


class TestHeavisideAPI_int32(TestHeavisideAPI_float64):
147

148 149 150 151 152 153 154 155
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("int32")
        self.y_np = np.random.random((13, 17)).astype("int32")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "int32"


class TestHeavisideError(unittest.TestCase):
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170
    def test_input(self):
        paddle.disable_static()

        def test_input_x():
            paddle.heaviside(1, paddle.randn([100]))

        self.assertRaises(ValueError, test_input_x)

        def test_input_y():
            paddle.heaviside(paddle.randn([100]), 1)

        self.assertRaises(ValueError, test_input_y)

        def test_input_xy():
171 172
            paddle.heaviside(paddle.randn([100], 'float32'),
                             paddle.randn([100], 'float64'))
173 174 175 176 177 178

        self.assertRaises(ValueError, test_input_xy)


if __name__ == '__main__':
    unittest.main()