test_eig_op.py 8.9 KB
Newer Older
L
Lijunhui 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#  Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci
import unittest
from paddle.fluid.op import Operator
from paddle.fluid import compiler, Program, program_guard


# cast output to complex for numpy.linalg.eig
def cast_to_complex(input, output):
    if (input.dtype == np.float32):
        output = output.astype(np.complex64)
    elif (input.dtype == np.float64):
        output = output.astype(np.complex128)
    return output


# define eig backward function for a single square matrix
def eig_backward(w, v, grad_w, grad_v):
    v_tran = np.transpose(v)
    v_tran = np.conjugate(v_tran)
    w_conj = np.conjugate(w)
    w_conj_l = w_conj.reshape(1, w.size)
    w_conj_r = w_conj.reshape(w.size, 1)
    w_conj_2d = w_conj_l - w_conj_r

    vhgv = np.matmul(v_tran, grad_v)
    real_vhgv = np.real(vhgv)
    diag_real = real_vhgv.diagonal()

    diag_2d = diag_real.reshape(1, w.size)
    rhs = v * diag_2d
    mid = np.matmul(v_tran, rhs)
    result = vhgv - mid

    res = np.divide(result, w_conj_2d)
    row, col = np.diag_indices_from(res)
    res[row, col] = 1.0

    tmp = np.matmul(res, v_tran)
    dx = np.linalg.solve(v_tran, tmp)
    return dx


class TestEigOp(OpTest):
62

L
Lijunhui 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    def setUp(self):
        paddle.enable_static()
        paddle.device.set_device("cpu")
        self.op_type = "eig"
        self.__class__.op_type = self.op_type
        self.init_input()
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Eigenvalues': self.out[0], 'Eigenvectors': self.out[1]}

    def init_input(self):
        self.set_dtype()
        self.set_dims()
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.out = np.linalg.eig(self.x)
        self.out = (cast_to_complex(self.x, self.out[0]),
                    cast_to_complex(self.x, self.out[1]))

    # for the real input, a customized checker is needed
    def checker(self, outs):
        actual_out_w = outs[0].flatten()
        expect_out_w = self.out[0].flatten()
        actual_out_v = outs[1].flatten()
        expect_out_v = self.out[1].flatten()

        length_w = len(expect_out_w)
        act_w_real = np.sort(
            np.array([np.abs(actual_out_w[i].real) for i in range(length_w)]))
        act_w_imag = np.sort(
            np.array([np.abs(actual_out_w[i].imag) for i in range(length_w)]))
        exp_w_real = np.sort(
            np.array([np.abs(expect_out_w[i].real) for i in range(length_w)]))
        exp_w_imag = np.sort(
            np.array([np.abs(expect_out_w[i].imag) for i in range(length_w)]))

        for i in range(length_w):
            self.assertTrue(
                np.allclose(act_w_real[i], exp_w_real[i], 1e-6, 1e-5),
                "The eigenvalues real part have diff: \nExpected " +
                str(act_w_real[i]) + "\n" + "But got: " + str(exp_w_real[i]))
            self.assertTrue(
                np.allclose(act_w_imag[i], exp_w_imag[i], 1e-6, 1e-5),
                "The eigenvalues image part have diff: \nExpected " +
                str(act_w_imag[i]) + "\n" + "But got: " + str(exp_w_imag[i]))

        length_v = len(expect_out_v)
        act_v_real = np.sort(
            np.array([np.abs(actual_out_v[i].real) for i in range(length_v)]))
        act_v_imag = np.sort(
            np.array([np.abs(actual_out_v[i].imag) for i in range(length_v)]))
        exp_v_real = np.sort(
            np.array([np.abs(expect_out_v[i].real) for i in range(length_v)]))
        exp_v_imag = np.sort(
            np.array([np.abs(expect_out_v[i].imag) for i in range(length_v)]))

        for i in range(length_v):
            self.assertTrue(
                np.allclose(act_v_real[i], exp_v_real[i], 1e-6, 1e-5),
                "The eigenvectors real part have diff: \nExpected " +
                str(act_v_real[i]) + "\n" + "But got: " + str(exp_v_real[i]))
            self.assertTrue(
                np.allclose(act_v_imag[i], exp_v_imag[i], 1e-6, 1e-5),
                "The eigenvectors image part have diff: \nExpected " +
                str(act_v_imag[i]) + "\n" + "But got: " + str(exp_v_imag[i]))

    def set_dtype(self):
        self.dtype = np.complex64

    def set_dims(self):
        self.shape = (10, 10)

    def init_grad(self):
        # grad_w, grad_v complex dtype
        gtype = self.dtype
        if self.dtype == np.float32:
            gtype = np.complex64
        elif self.dtype == np.float64:
            gtype = np.complex128
        self.grad_w = np.ones(self.out[0].shape, gtype)
        self.grad_v = np.ones(self.out[1].shape, gtype)
        self.grad_x = eig_backward(self.out[0], self.out[1], self.grad_w,
                                   self.grad_v)

    def test_check_output(self):
146 147
        self.check_output_with_place_customized(checker=self.checker,
                                                place=core.CPUPlace())
L
Lijunhui 已提交
148 149 150

    def test_check_grad(self):
        self.init_grad()
151 152 153
        self.check_grad(['X'], ['Eigenvalues', 'Eigenvectors'],
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_w, self.grad_v])
L
Lijunhui 已提交
154 155 156


class TestComplex128(TestEigOp):
157

L
Lijunhui 已提交
158 159 160 161 162
    def set_dtype(self):
        self.dtype = np.complex128


@skip_check_grad_ci(
163 164
    reason=
    "For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
L
Lijunhui 已提交
165 166
)
class TestDouble(TestEigOp):
167

L
Lijunhui 已提交
168 169 170 171 172 173 174 175
    def set_dtype(self):
        self.dtype = np.float64

    def test_check_grad(self):
        pass


@skip_check_grad_ci(
176 177
    reason=
    "For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
L
Lijunhui 已提交
178 179
)
class TestEigBatchMarices(TestEigOp):
180

L
Lijunhui 已提交
181 182 183 184 185 186 187 188 189 190 191
    def set_dtype(self):
        self.dtype = np.float64

    def set_dims(self):
        self.shape = (3, 10, 10)

    def test_check_grad(self):
        pass


@skip_check_grad_ci(
192 193
    reason=
    "For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
L
Lijunhui 已提交
194 195
)
class TestFloat(TestEigOp):
196

L
Lijunhui 已提交
197 198 199 200 201 202 203 204
    def set_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        pass


class TestEigStatic(TestEigOp):
205

L
Lijunhui 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219
    def test_check_output_with_place(self):
        paddle.enable_static()
        place = core.CPUPlace()
        input_np = np.random.random([3, 3]).astype('complex')
        expect_val, expect_vec = np.linalg.eig(input_np)
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[3, 3], dtype='complex')
            act_val, act_vec = paddle.linalg.eig(input)

            exe = fluid.Executor(place)
            fetch_val, fetch_vec = exe.run(fluid.default_main_program(),
                                           feed={"input": input_np},
                                           fetch_list=[act_val, act_vec])
        self.assertTrue(
220 221 222
            np.allclose(expect_val, fetch_val, 1e-6,
                        1e-6), "The eigen values have diff: \nExpected " +
            str(expect_val) + "\n" + "But got: " + str(fetch_val))
L
Lijunhui 已提交
223
        self.assertTrue(
224 225
            np.allclose(np.abs(expect_vec), np.abs(fetch_vec), 1e-6,
                        1e-6), "The eigen vectors have diff: \nExpected " +
L
Lijunhui 已提交
226 227 228 229 230
            str(np.abs(expect_vec)) + "\n" + "But got: " +
            str(np.abs(fetch_vec)))


class TestEigWrongDimsError(unittest.TestCase):
231

L
Lijunhui 已提交
232 233 234 235 236 237 238 239 240
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = np.random.random((3)).astype('float32')
        x = paddle.to_tensor(a)
        self.assertRaises(ValueError, paddle.linalg.eig, x)


class TestEigNotSquareError(unittest.TestCase):
241

L
Lijunhui 已提交
242 243 244 245 246 247 248 249 250
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = np.random.random((1, 2, 3)).astype('float32')
        x = paddle.to_tensor(a)
        self.assertRaises(ValueError, paddle.linalg.eig, x)


class TestEigUnsupportedDtypeError(unittest.TestCase):
251

L
Lijunhui 已提交
252 253 254 255 256 257 258 259 260 261
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = (np.random.random((3, 3)) * 10).astype('int64')
        x = paddle.to_tensor(a)
        self.assertRaises(ValueError, paddle.linalg.eig, x)


if __name__ == "__main__":
    unittest.main()