hybrid_parallel_inference.py 32.0 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict
from paddle.fluid.framework import Program, Block, Operator
J
Jiabin Yang 已提交
17
from paddle.fluid.framework import _non_static_mode
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
import paddle.fluid.core as core
import paddle.distributed.fleet as fleet
import numpy as np


class HybridParallelInferenceHelper(object):
    """
    A helper class to split program for inference with hybrid parallelism.
    
    Args:
        startup_program (Program): the startup program.
        main_program (Program): the main program.
        num_mp (int): number of model parallel degree. Default ``1``.
        num_pp (int): number of pipeline parallel degree. Default ``1``.
        micro_batch_size (int): number of micro batch size. Default ``1``.
        beam_size (int): number of beam search size. Default ``1``.
        init_comm (bool): wheter if initilize comminication group. Default ``True``.
        role_maker (RoleMakerBase or subclass): user custom define RoleMakerBase.
            If ``role_maker==None``, then use PaddleCloudRoleMaker. Default ``None``.
    
    Returns:
        None.
        
    Write Paradigm:
    
    .. code-block:: bash
        :name: bash-example1
        
        # while op pattern
        with paddle.fluid.device_guard(f'{device}:all'):
            # init global cond
            max_len = layers.fill_constant(shape=[1], dtype="int64", value=10, force_cpu=False)
            step_idx = layers.fill_constant(shape=[1], dtype="int64", value=0, force_cpu=False)
            cond_int = layers.fill_constant(shape=[1], dtype="int64", value=0, force_cpu=False, name="cond_int")
            cond = layers.cast(step_idx < max_len, dtype="bool")
            while_op = layers.While(cond, is_test=True)
            
            # init global lod_tensor_array for generation task
            arr = layers.array_write(data, step_idx)
            
        with while_op.block():
            with paddle.fluid.device_guard(f'{device}:all'):
                # read data from global lod_tensor_array
                element_in_arr = layers.array_read(array=arr, i=step_idx)
                # write placehold data to global lod_tensor_array,
                # it need for send_v2 of lod_tensor_array
                layers.increment(x=step_idx, value=1.0, in_place=True)
                layers.array_write(element_in_arr, i=step_idx, array=arr)
                
            with paddle.fluid.device_guard(f'{device}:0'):
                ... some code
                
            with paddle.fluid.device_guard(f'{device}:1'):
                ... some code
                
            with paddle.fluid.device_guard(f'{device}:{num_pp-1}'):
                # generate some data in while block and write to global lod_tensor_array
                # that they are read in next while step.
                # we will using send_v2 to send global lod_tensor_array to other pipeline and sync
                layers.array_write(other_var, i=step_idx, array=arr)
                
                # update cond and assign to cond_int, we will sync cond_int
                layers.assign(layers.cast(cond, dtype="int32"), cond_int)
                
            with paddle.fluid.device_guard(f'{model._device}:all'):
                # the code below must at end of while block and exists in device:all
                layers.assign(layers.cast(cond_int, dtype='bool'), cond)
                
        with paddle.fluid.device_guard(f'{model._device}:all'):
            # use a empty lod_tensor_array to clear lod_tensor_array
            layers.assign(layers.create_array(data.dtype), arr)
            
            
    Examples:
    
    .. code-block:: python
        :name: code-example1
    
        # required: distributed
        import os
        import numpy as np
        import paddle
        import paddle.fluid.layers as layers
        import paddle.distributed.fleet as fleet
        paddle.enable_static()

        nranks = int(os.getenv("PADDLE_TRAINERS_NUM", 1))
        rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
        dev_id = int(os.getenv("FLAGS_selected_gpus", 0))

        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        if nranks > 1:
            dist_strategy = fleet.DistributedStrategy()
            dist_strategy.without_graph_optimization = True
            fleet.init(is_collective=True, strategy=dist_strategy)

        device = "gpu"

        with paddle.static.program_guard(main_program, startup_program):
            with paddle.fluid.device_guard(f'{device}:0'):
                X = paddle.static.data(name='X', shape=[None, 2], dtype='float32')

            with paddle.fluid.device_guard(f'{device}:all'):
                max_len = layers.fill_constant(
                    shape=[1], dtype="int64", value=5, force_cpu=False, name="n")
                step_idx = layers.fill_constant(
                    shape=[1], dtype="int64", value=0, force_cpu=False, name="i")

                data = layers.array_write(X, step_idx)

                cond_int = layers.fill_constant(shape=[1], dtype="int64", value=0, force_cpu=False, name="cond_int")
                cond = layers.less_than(x=step_idx, y=max_len)
                while_op = layers.While(cond, is_test=True)

            with while_op.block():
                with paddle.fluid.device_guard(f'{device}:all'):
                    input = layers.array_read(array=data, i=step_idx)
                    layers.increment(x=step_idx, value=1.0, in_place=True)
                    layers.array_write(input, i=step_idx, array=data)

                with paddle.fluid.device_guard(f'{device}:0'):
                    param_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(1.0))
                    weight1 = paddle.static.create_parameter(
                        shape=[2, 5], dtype='float32', attr=param_attr, is_bias=False)
                    hidden1 = paddle.matmul(input, weight1)

                with paddle.fluid.device_guard(f'{device}:1'):
                    param_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(2.0))
                    weight2 = paddle.static.create_parameter(
                        shape=[5, 2], dtype='float32', attr=param_attr, is_bias=False)
                    hidden2 = paddle.matmul(hidden1, weight2)

                    layers.array_write(hidden2, i=step_idx, array=data)

                    # update cond and assign to cond_int, we will sync cond_int
                    layers.less_than(x=step_idx, y=max_len, cond=cond)
                    layers.assign(layers.cast(cond, dtype="int32"), cond_int)

                with paddle.fluid.device_guard(f'{device}:all'):
                    # the code below must at end of while block and exists in device:all
                    layers.assign(layers.cast(cond_int, dtype='bool'), cond)

            with paddle.fluid.device_guard(f'{device}:all'):
                out = layers.create_array(data.dtype)
                layers.assign(data, out)

            with paddle.fluid.device_guard(f'{device}:all'):
                # use a empty lod_tensor_array to clear lod_tensor_array
                layers.assign(layers.create_array(data.dtype), data)

        helper = fleet.HybridParallelInferenceHelper(startup_program, main_program, micro_batch_size=2, num_pp=2, init_comm=nranks>1)
        helper.gen_infer_program(['array_write_0.out'], ['cond_int.tmp_0'])

        exe = paddle.static.Executor(paddle.CUDAPlace(dev_id))
        exe.run(startup_program)
        
        np.random.seed(2333)
        for step in range(5):
            init_data = np.random.uniform(low=0.0, high=1.0, size=[2, 2]).astype('float32')
            [res] = exe.run(main_program, feed={"X": init_data}, fetch_list=[out])
            print('-------- step', step, ' --------')
            print(res)
    """

    def __init__(self,
                 startup_program,
                 main_program,
                 num_mp=1,
                 num_pp=1,
                 micro_batch_size=1,
                 beam_size=1,
                 init_comm=True,
                 role_maker=None):

        assert isinstance(startup_program, Program)
        assert isinstance(main_program, Program)

        self._device = None
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
        assert self._device, "Only gpu and npu are supported."
J
Jiabin Yang 已提交
203
        assert not _non_static_mode(), "Only static mode is supported."
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()

        self._param_device_map = dict()

        self._pipeline_pair = []
        self._pipeline_pair_in_while = []
        self._pp_ring_map = dict()
        self.ring_id = 20  # Just a magic number

        self.micro_batch_size = micro_batch_size
        self.beam_size = beam_size
        self.init_comm = init_comm

        self._output_var_to_op = None
        self._input_var_to_op = None
        self._main_program = main_program
        self._startup_program = startup_program

        if role_maker is None:
            self.role_maker = fleet.base.role_maker.PaddleCloudRoleMaker(
                is_collective=True)
        else:
            if isinstance(role_maker, fleet.base.role_maker.RoleMakerBase):
                assert role_maker._is_collective == True
                self.role_maker = role_maker

        # communication_group info
        self.mp_ring_id = 0
        self.global_ring_id = 1

        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.role_maker._worker_index()]
        self.rank = self.role_maker._worker_index()
        self.nranks = self.role_maker._worker_num()
        assert num_mp * num_pp == self.nranks
        self.num_pp = num_pp
        self.num_mp = num_mp

        # global ring info
        self.global_endpoints = self.endpoints
        self.global_rank = self.rank
        self.global_nranks = self.nranks

        arr = np.arange(0, self.num_pp * self.num_mp).reshape(
            [self.num_pp, self.num_mp])
        ipp, imp = np.where(arr == self.rank)
        ipp = ipp[0]
        imp = imp[0]
        self.mp_group = arr[ipp, :]
        self.pp_group = arr[:, imp]

        self._stage = ipp

    def _init_communication_group(self):
        dev_ids = []
        for pair in self._pipeline_pair:
            prev_id, cur_id = pair
            if prev_id not in dev_ids:
                dev_ids.append(prev_id)
            if cur_id not in dev_ids:
                dev_ids.append(cur_id)
        num_pp = len(dev_ids)
        num_pp = max(1, num_pp)
        assert num_pp == self.num_pp, 'num_pp: {}, self.num_pp: {}'.format(
            num_pp, self.num_pp)

        collective_helper = fleet.meta_optimizers.common.CollectiveHelper(
            self.role_maker, wait_port=False)

        # Create global rings
278 279 280 281 282 283
        collective_helper._init_communicator(self._startup_program,
                                             self.current_endpoint,
                                             self.global_endpoints,
                                             self.global_rank,
                                             self.global_ring_id, True,
                                             self.global_ring_id, True)
284 285 286 287 288 289 290 291

        # Create mp rings
        if self.num_mp > 1:
            mp_endpoints = [self.endpoints[mp_idx] for mp_idx in self.mp_group]
            mp_rank = [
                idx for idx, mp_idx in enumerate(self.mp_group)
                if mp_idx == self.rank
            ][0]
292 293 294 295 296
            collective_helper._init_communicator(self._startup_program,
                                                 self.current_endpoint,
                                                 mp_endpoints, mp_rank,
                                                 self.mp_ring_id, True,
                                                 self.global_ring_id, True)
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

        # Create pipeline rings
        if self.num_pp > 1:
            for pair in self._pipeline_pair:
                pair_key = pair[0] * 1000 + pair[1]
                ring_id = self._pp_ring_map[pair_key]

                first_node = self.pp_group[pair[0]]
                second_node = self.pp_group[pair[1]]
                if self.rank != first_node and self.rank != second_node:
                    collective_helper._init_communicator(
                        self._startup_program, None, None, None, None, False,
                        self.global_ring_id, True)
                    continue

                pipeline_endpoints = [
                    self.endpoints[first_node], self.endpoints[second_node]
                ]
                pipeline_rank = 0 if self.rank == first_node else 1
316 317 318 319 320 321
                collective_helper._init_communicator(self._startup_program,
                                                     self.current_endpoint,
                                                     pipeline_endpoints,
                                                     pipeline_rank, ring_id,
                                                     False, self.global_ring_id,
                                                     True)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
        output_var_to_op = defaultdict(list)
        # A map from var to op which takes it as input.
        input_var_to_op = defaultdict(list)

        for index, op in enumerate(block.ops):
            for var_name in op.input_arg_names:
                input_var_to_op[var_name].append([op, index])
            for var_name in op.output_arg_names:
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _update_param_device_map(self):
        """
        Get the device info for parameters.
        """
        params = [param.name for param in self._main_program.all_parameters()]
        for each_block in self._main_program.blocks:
            for op in each_block.ops:
                for var_name in op.input_arg_names:
                    if not var_name in params or var_name in self._param_device_map:
                        continue
                    device = op.attr(self._op_device_key)

                    self._param_device_map[var_name] = device

    def _split_program(self, program, stage, block_idx):
        """
        Split a program and get the one with the given pipeline stage.

        Args:
            stage (int): pipeline stage
            block_idx (int): block index
            
        Returns:
            used_var_names (set): used var names in block_idx block
        """

        used_var_names = set()
        block = program.block(block_idx)
        op_idx = 0
        for op in list(block.ops):
            op_stage = op.attr(self._op_device_key).split(':')[1]
            # Copy ops whose op_device set to "gpu:all" to all sections.
            if op_stage == "all" or int(op_stage) == stage:
                op_idx += 1
                if op.type == "while":
                    sub_block_id = int(op.attr('sub_block').id)
376 377
                    sub_used_var_names = self._split_program(
                        program, stage, sub_block_id)
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

                    used_var_names.update(sub_used_var_names)

                    input_idxs = []
                    input_arg_names = op.input("X")
                    for i, name in enumerate(input_arg_names):
                        if name not in sub_used_var_names:
                            input_idxs.append(i)
                    if len(input_idxs) > 0:
                        for i in reversed(input_idxs):
                            input_arg_names.pop(i)
                        op.desc.set_input("X", input_arg_names)

                    output_idxs = []
                    output_arg_names = op.output("Out")
                    for i, name in enumerate(output_arg_names):
                        if name not in sub_used_var_names:
                            output_idxs.append(i)
                    if len(output_idxs) > 0:
                        for i in reversed(output_idxs):
                            output_arg_names.pop(i)
                        op.desc.set_output("Out", output_arg_names)

                for var_name in op.input_arg_names + op.output_arg_names:
                    used_var_names.add(var_name)
            else:
                block._remove_op(op_idx)

        for var_name in list(block.vars.keys()):
            if not var_name in used_var_names:
                block._remove_var(var_name)

        return used_var_names

412

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
#     def _find_post_op(self, index, var_name):
#         """
#         Find the post op that has variable named var_name as input.
#         """
#         # bugfix for uniform hybrid parallelism
#         if '.cast_fp32' in var_name:
#             var_name = var_name.replace('.cast_fp32', '')
#         if '.cast_fp16' in var_name:
#             var_name = var_name.replace('.cast_fp16', '')

#         post_ops = self._input_var_to_op[var_name]
#         if post_ops == None: return None
#         result_op = None
#         for post_op, post_idx in reversed(post_ops):
#             if post_idx > index:
#                 result_op = post_op
#                 break
#         return result_op

    def _find_prev_op(self, index, var_name):
        """
        Find the previous op of op with index that outputs
        variable named var_name.
        """
        prev_ops = self._output_var_to_op[var_name]
        if prev_ops == None: return None
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
                break
        return result_op

    def _add_op_device_attr(self, block):
        """
        Add op_device attrribute for ops in block that have 
        not that attribute set.
        
        Args:
            block (Block): the block to process.
        """
        assert isinstance(block, Block)

        # Ops should be copied to all pipeline stages.
        device_all_ops = [
            "create_py_reader",
            "read",
            "create_double_buffer_reader",
            "while",
        ]

        for op in block.ops:
            if op.type in device_all_ops:
                # We use "gpu:all" to represent an op should be put on all
                # pipeline stages, such as read ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
                op._set_attr(self._op_device_key, self._device + ":all")
            if op.type == "while":
                sub_block_id = op.attr('sub_block').id
                sub_block = block.program.block(sub_block_id)
                self._add_op_device_attr(sub_block)

    def _check_validation(self, block):
        """
        Check whether ops in a block have both the op_device and the 
        op_role attributes set.
        """
        assert isinstance(block, Block)

        pre_stage_id = None
        for op in block.ops:
484 485
            assert op.has_attr(self._op_role_key), ("{} has no {} set .".format(
                op.type, self._op_role_key))
486 487 488 489
            op_role = op.attr(self._op_role_key)
            assert op_role == int(self._op_role.Forward), (
                "Only forward is supported for inference.")
            if not op._has_kernel(op.type):
490 491 492
                assert op.type in [
                    "while", "conditional_block"
                ], ("The only supported op without kernel is while.")
493 494 495
                sub_block_id = op.attr('sub_block').id
                sub_block = block.program.block(sub_block_id)
                self._check_validation(sub_block)
496 497 498
            assert op.has_attr(
                self._op_device_key), ("{} has no {} set.".format(
                    op.type, self._op_device_key))
499 500

            device = op.attr(self._op_device_key)
501 502
            assert device, ("{} has no {} set.".format(op.type,
                                                       self._op_device_key))
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
            if device.split(':')[1] == "all": continue

            dev_type = device.split(':')[0]
            assert dev_type == self._device
            stage_id = int(device.split(':')[1])
            pre_stage_id = stage_id

    def _insert_sendrecv_ops_for_boundaries(self, block, is_while_block):
        """
        Insert a pair of send and recv ops for every two
        consecutive ops on different devices.
        """
        # A map from var to device where op takes it as input,
        # avoiding multiple send and recv ops.
        input_var_to_device = dict()

519 520 521
        extra_index_info = {
            'index': 0,
        }
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

        for index, op in enumerate(list(block.ops)):
            cur_device = op.attr(self._op_device_key)
            if cur_device.split(':')[-1] == "all": continue
            for var_name in op.input_arg_names:
                if not block.has_var(var_name) and block._find_var_recursive(
                        var_name):
                    continue
                var = block.var(var_name)
                # skip data var
                if var.is_data: continue
                prev_device = None
                generate_ops = self._output_var_to_op.get(var_name)
                if generate_ops is None:
                    if var_name not in self._param_device_map:
                        continue
                    prev_device = self._param_device_map[var_name]

                prev_op = self._find_prev_op(index, var_name)

                if not prev_device:
                    prev_device = prev_op.attr(self._op_device_key) \
                        if prev_op else None

                if prev_device is None or prev_device.split(":")[-1] == "all":
                    continue

                if prev_device == cur_device: continue

                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

556 557
                assert self._device == cur_device.split(
                    ':')[0], "More than one device type found."
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
                device_type = cur_device.split(':')[0] + ':'

                def _insert_send_recv(cur_id, prev_id):
                    assert cur_id > prev_id
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
                            (cur_dev, prev_dev))
                        return

                    assert cur_id - prev_id == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
                    var = block.vars[var_name]
                    pair = (prev_id, cur_id)
                    if is_while_block and pair not in self._pipeline_pair_in_while:
                        self._pipeline_pair_in_while.append(pair)

                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]

                    block._insert_op_without_sync(
                        index=index + extra_index_info['index'],
                        type='send_v2',
                        inputs={'X': var},
                        attrs={
                            self._op_device_key: prev_dev,
                            self._op_role_key: op_role,
                            'use_calc_stream': True,
                            'peer': 1,
                            'ring_id': ring_id
                        })
                    extra_index_info['index'] += 1
                    var_shape = list(var.shape)
                    if var_shape[0] < 0:
                        if is_while_block:
                            var_shape[
                                0] = self.micro_batch_size * self.beam_size
                        else:
                            var_shape[0] = self.micro_batch_size

                    block._insert_op_without_sync(
                        index=index + extra_index_info['index'],
                        type='recv_v2',
                        outputs={'Out': [var]},
                        attrs={
                            'out_shape': var_shape,
                            'dtype': var.dtype,
                            self._op_device_key: cur_dev,
                            self._op_role_key: op_role,
                            'use_calc_stream': True,
                            'peer': 0,
                            'ring_id': ring_id
                        })
                    extra_index_info['index'] += 1

628 629
                _insert_send_recv(int(cur_device.split(':')[1]),
                                  int(prev_device.split(':')[1]))
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
        block._sync_with_cpp()

    def _insert_sendrecv_ops_in_while_block(
            self, block, sync_in_while_lastpp2firstpp_var_names,
            sync_in_while_var_names, stage):
        dev_ids = []
        for pair in self._pipeline_pair_in_while:
            prev_id, cur_id = pair
            if prev_id not in dev_ids:
                dev_ids.append(prev_id)
            if cur_id not in dev_ids:
                dev_ids.append(cur_id)

        if len(dev_ids) == 0:
            return

        first_id = min(dev_ids)
        last_id = max(dev_ids)

        assert len(block.ops) > 2, "It must have more than 2 ops in while sub block, " \
            "layers.assign(layers.cast(cond_int, dtype='bool'), cond) must at end of while block, " \
            "because nccl cannot send bool dtype var"
        index = len(block.ops) - 2

        for prev_id in dev_ids:
            if prev_id == cur_id: continue
            assert cur_id > prev_id

            pair = (prev_id, cur_id)
            # 1000 is just a magic number
            pair_key = prev_id * 1000 + cur_id
            if pair not in self._pipeline_pair:
                self._pipeline_pair.append(pair)
                self._pp_ring_map[pair_key] = self.ring_id
                ring_id = self.ring_id
                self.ring_id += 1
            else:
                ring_id = self._pp_ring_map[pair_key]

            if cur_id == last_id and prev_id == first_id:
                var_names = sync_in_while_lastpp2firstpp_var_names + sync_in_while_var_names
            else:
                var_names = sync_in_while_var_names

            for var_name in var_names:
                var = block._var_recursive(var_name)
                if stage == cur_id:
                    block._insert_op_without_sync(
                        index=index,
                        type='send_v2',
                        inputs={'X': var},
                        attrs={
                            self._op_device_key:
                            self._device + ':' + str(cur_id),
                            self._op_role_key: int(self._op_role.Forward),
                            'use_calc_stream': True,
                            'peer': 0,
                            'ring_id': ring_id
                        })
                else:
                    var_shape = list(var.shape)
                    var_shape[0] = self.micro_batch_size if var_shape[
                        0] < 0 else var_shape[0]
                    block._insert_op_without_sync(
                        index=index,
                        type='recv_v2',
                        outputs={'Out': [var]},
                        attrs={
                            'out_shape': var_shape,
                            'dtype': var.dtype,
                            self._op_device_key:
                            self._device + ':' + str(prev_id),
                            self._op_role_key: int(self._op_role.Forward),
                            'use_calc_stream': True,
                            'peer': 1,
                            'ring_id': ring_id
                        })
                index += 1
        block._sync_with_cpp()

    def _get_while_block(self):
        """
        Get the while sub-block.
        """
        main_block = self._main_program.global_block()
        num_while = 0
        sub_block_id = None
        for op in main_block.ops:
            assert num_while < 2, "More than one while op found."
            if op.type == 'while':
                sub_block_id = op.attr('sub_block').id
                num_while += 1
        if sub_block_id: return op, self._main_program.block(sub_block_id)
        return None, None

    def gen_infer_program(self,
                          sync_in_while_lastpp2firstpp_var_names=None,
                          sync_in_while_var_names=None,
                          debug=False):
        """
        Generate inference program.
        Params:
            sync_in_while_lastpp2firstpp_var_names (list(str)): the vars in the last pipeline 
                that need to send var to first pipeline and exclude bool dtype var
            sync_in_while_var_names (list(str)): the vars sync among all pipeline in while block
                e.g cond. Note that cond cannot be bool dtype.
            debug (bool): the flag indicate debug
        """
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        if debug:
            with open(f'main_program.txt', 'w') as f:
                f.write(str(self._main_program))
            with open(f'startup_program.txt', 'w') as f:
                f.write(str(self._startup_program))

        # step1: add op_device attribute for all ops
        self._add_op_device_attr(startup_block)
        self._check_validation(startup_block)
        self._add_op_device_attr(main_block)
        self._check_validation(main_block)

        # step2: add send/recv ops
        self._update_param_device_map()
        # step2.1: add send/recv for main_block
        out_var_to_op, in_var_to_op = self._get_input_output_info(main_block)
        self._output_var_to_op = out_var_to_op
        self._input_var_to_op = in_var_to_op
        self._insert_sendrecv_ops_for_boundaries(main_block, False)

        # step2.2: add send/recv for while_block
        while_op, while_block = self._get_while_block()
        if while_block:
            out_var_to_op, in_var_to_op = self._get_input_output_info(
                while_block)
            self._output_var_to_op = out_var_to_op
            self._input_var_to_op = in_var_to_op

            self._insert_sendrecv_ops_for_boundaries(while_block, True)

            self._insert_sendrecv_ops_in_while_block(
                while_block, sync_in_while_lastpp2firstpp_var_names,
                sync_in_while_var_names, self._stage)

        # step3: split programs
        self._split_program(self._startup_program, self._stage, 0)
        self._split_program(self._main_program, self._stage, 0)

        if debug:
            with open(f'main_program.txt.{self.rank}', 'w') as f:
                f.write(str(self._main_program))
            with open(f'startup_program.txt.{self.rank}', 'w') as f:
                f.write(str(self._startup_program))

        if self.init_comm:
            self._init_communication_group()