localsgd_optimizer.py 19.3 KB
Newer Older
Y
Yi Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

S
ShenLiang 已提交
17
import paddle
18
from paddle.fluid import program_guard, layers, default_main_program
J
Jiangxinz 已提交
19
from paddle.fluid import default_startup_program
Y
Yi Liu 已提交
20 21 22
from .meta_optimizer_base import MetaOptimizerBase
from .common import OpRole, OP_ROLE_KEY, CollectiveHelper, is_update_op

23 24
__all__ = []

Y
Yi Liu 已提交
25 26

class LocalSGDOptimizer(MetaOptimizerBase):
27

Y
Yi Liu 已提交
28 29 30
    def __init__(self, optimizer):
        super(LocalSGDOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
31
        self.meta_optimizers_white_list = ['AMPOptimizer']
32
        self.meta_optimizers_black_list = [
33 34
            "GraphExecutionOptimizer",
            "AdaptiveLocalSGDOptimizer",
35
        ]
Y
Yi Liu 已提交
36 37 38
        self.snapshot_key = '@SNAPSHOT'

    def _can_apply(self):
39 40 41
        if not self.role_maker._is_collective:
            return False

Y
Yi Liu 已提交
42 43 44
        if not self.user_defined_strategy.localsgd:
            return False

45
        if self.role_maker._worker_num() <= 1:
Y
Yi Liu 已提交
46 47
            return False

S
ShenLiang 已提交
48
        return isinstance(self.inner_opt, paddle.optimizer.momentum.Momentum) \
49 50 51
            or isinstance(self.inner_opt, paddle.fluid.optimizer.Momentum) \
            or isinstance(self.inner_opt, paddle.optimizer.sgd.SGD) \
            or isinstance(self.inner_opt, paddle.fluid.optimizer.SGD)
Y
Yi Liu 已提交
52 53 54

    def _disable_strategy(self, dist_strategy):
        dist_strategy.localsgd = False
55
        dist_strategy.localsgd_configs = {}
Y
Yi Liu 已提交
56

57
    def _enable_strategy(self, dist_strategy, context):
58
        dist_strategy.localsgd = True
59
        dist_strategy.localsgd_configs = {"k_steps": 1, "begin_step": 1}
60

Y
Yi Liu 已提交
61 62 63
    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

64 65 66 67 68 69 70 71 72 73
    def create_snapshot_vars(self, program):
        block = program.global_block()

        non_dist_params = []
        for param in block.iter_parameters():
            if not param.is_distributed:
                non_dist_params.append(param)

        p2s = []
        for param in non_dist_params:
74 75 76 77 78
            snapshot = block.create_var(name=self.snapshot_name(param.name),
                                        shape=param.shape,
                                        persistable=True,
                                        stop_gradient=True,
                                        dtype=param.dtype)
79 80 81 82 83 84 85 86
            p2s.append([param, snapshot])
        return p2s

    def init_snapshot_vars(self, startup_program, param2snapshot):
        with program_guard(startup_program):
            for param, snapshot in param2snapshot:
                layers.assign(param, snapshot)

Y
Yi Liu 已提交
87 88 89 90 91
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
92 93
        minimized = self.inner_opt.minimize(loss,
                                            startup_program=startup_program)
Y
Yi Liu 已提交
94

95 96 97
        k_steps_value = self.user_defined_strategy.localsgd_configs['k_steps']
        begin_step_value = self.user_defined_strategy.localsgd_configs[
            'begin_step']
Y
Yi Liu 已提交
98 99 100 101 102 103 104 105

        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        self.nrings = 2
        collective_helper = CollectiveHelper(self.role_maker, self.nrings)
        collective_helper.update_startup_program(startup_program)
106 107
        p2s = self.create_snapshot_vars(startup_program)
        self.init_snapshot_vars(startup_program, p2s)
Y
Yi Liu 已提交
108

109 110
        p2s = self.create_snapshot_vars(main_block.program)
        with program_guard(main_block.program, startup_program):
111
            step = layers.autoincreased_step_counter(begin=1)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
            k_steps = layers.create_global_var(name="k_steps",
                                               shape=[1],
                                               value=k_steps_value,
                                               dtype='int64',
                                               persistable=True)

            begin_step = layers.create_global_var(name="begin_step",
                                                  shape=[1],
                                                  value=begin_step_value,
                                                  dtype='int64',
                                                  persistable=True)

            last_step = layers.create_global_var(name="last_step",
                                                 shape=[1],
                                                 value=begin_step_value,
                                                 dtype='int64',
                                                 persistable=True)
Y
Yi Liu 已提交
129 130

            def communicate():
131
                sub_block = default_main_program().current_block()
Y
Yi Liu 已提交
132
                ring_id = -1
133
                for param, snapshot in p2s:
134 135 136 137 138 139 140 141 142 143 144
                    sub_block.append_op(type='elementwise_sub',
                                        inputs={
                                            'X': [snapshot],
                                            'Y': [param]
                                        },
                                        outputs={'Out': [param]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(type='c_sync_calc_stream',
                                        inputs={'X': param},
                                        outputs={'Out': param},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
145
                    ring_id = (ring_id + 1) % self.nrings
146 147 148 149 150 151 152
                    sub_block.append_op(type='c_allreduce_sum',
                                        inputs={'X': [param]},
                                        outputs={'Out': [param]},
                                        attrs={
                                            'ring_id': ring_id,
                                            OP_ROLE_KEY: OpRole.Optimize
                                        })
Y
Yi Liu 已提交
153 154

                for ring_id in range(self.nrings):
155 156 157 158 159 160 161
                    sub_block.append_op(type='c_sync_comm_stream',
                                        inputs={'X': param},
                                        outputs={'Out': param},
                                        attrs={
                                            'ring_id': ring_id,
                                            OP_ROLE_KEY: OpRole.Optimize
                                        })
Y
Yi Liu 已提交
162

163
                for param, snapshot in p2s:
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
                    sub_block.append_op(type='scale',
                                        inputs={'X': [param]},
                                        outputs={'Out': [param]},
                                        attrs={
                                            'scale':
                                            1.0 / self.role_maker._worker_num(),
                                            OP_ROLE_KEY:
                                            OpRole.Optimize
                                        })
                    sub_block.append_op(type='elementwise_sub',
                                        inputs={
                                            'X': [snapshot],
                                            'Y': [param]
                                        },
                                        outputs={'Out': [param]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(type='assign',
                                        inputs={'X': [param]},
                                        outputs={'Out': [snapshot]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
Y
Yi Liu 已提交
184 185
                layers.assign(step, last_step)

186 187
            def begin_localsgd():
                layers.cond(step - last_step == k_steps, communicate)
Y
Yi Liu 已提交
188

189
            layers.cond(step > begin_step, begin_localsgd, communicate)
Y
Yi Liu 已提交
190
        return minimized
191 192 193


class AdaptiveLocalSGDOptimizer(MetaOptimizerBase):
194

195 196 197
    def __init__(self, optimizer):
        super(AdaptiveLocalSGDOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
198
        self.meta_optimizers_white_list = ['AMPOptimizer']
199 200 201 202 203 204 205 206 207 208 209 210
        self.meta_optimizers_black_list = [
            "GraphExecutionOptimizer", "LocalSGDOptimizer"
        ]
        self.snapshot_key = '@SNAPSHOT'

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False

        if not self.user_defined_strategy.adaptive_localsgd:
            return False

211
        if self.role_maker._worker_num() <= 1:
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            return False

        return isinstance(self.inner_opt, paddle.optimizer.momentum.Momentum) \
            or isinstance(self.inner_opt, paddle.fluid.optimizer.Momentum) \
            or isinstance(self.inner_opt, paddle.optimizer.sgd.SGD) \
            or isinstance(self.inner_opt, paddle.fluid.optimizer.SGD)

    def _disable_strategy(self, dist_strategy):
        dist_strategy.adaptive_localsgd = False
        dist_strategy.adaptive_localsgd_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.adaptive_localsgd = True
        dist_strategy.adaptive_localsgd_configs = {
            "init_k_steps": 1,
            "begin_step": 1
        }

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def create_snapshot_vars(self, program):
        block = program.global_block()

        non_dist_params = []
        for param in block.iter_parameters():
            if not param.is_distributed:
                non_dist_params.append(param)

        p2s = []
        for param in non_dist_params:
243 244 245 246 247
            snapshot = block.create_var(name=self.snapshot_name(param.name),
                                        shape=param.shape,
                                        persistable=True,
                                        stop_gradient=True,
                                        dtype=param.dtype)
248 249 250 251 252 253 254 255 256
            p2s.append([param, snapshot])
        return p2s

    def init_snapshot_vars(self, startup_program, param2snapshot):
        with program_guard(startup_program):
            for param, snapshot in param2snapshot:
                layers.assign(param, snapshot)

    def _generate_avg_loss(self, program_block, loss, avg_loss):
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        program_block.append_op(type='c_allreduce_sum',
                                inputs={'X': [loss]},
                                outputs={'Out': [avg_loss]},
                                attrs={
                                    'ring_id': 0,
                                    OP_ROLE_KEY: OpRole.Optimize,
                                    'use_calc_stream': True
                                })
        program_block.append_op(type='c_sync_calc_stream',
                                inputs={'X': [avg_loss]},
                                outputs={'Out': [avg_loss]},
                                attrs={OP_ROLE_KEY: OpRole.Optimize})

        program_block.append_op(type='scale',
                                inputs={'X': [avg_loss]},
                                outputs={'Out': [avg_loss]},
                                attrs={
                                    'scale':
                                    1.0 / self.role_maker._worker_num(),
                                    OP_ROLE_KEY: OpRole.Optimize
                                })
278 279 280 281 282 283

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
284 285
        minimized = self.inner_opt.minimize(loss,
                                            startup_program=startup_program)
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

        init_k_steps = self.user_defined_strategy.adaptive_localsgd_configs[
            'init_k_steps']
        begin_step_value = self.user_defined_strategy.adaptive_localsgd_configs[
            'begin_step']

        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        self.nrings = 2
        collective_helper = CollectiveHelper(self.role_maker, self.nrings)
        collective_helper.update_startup_program(startup_program)
        p2s = self.create_snapshot_vars(startup_program)
        self.init_snapshot_vars(startup_program, p2s)

        p2s = self.create_snapshot_vars(main_block.program)
        with program_guard(main_block.program, startup_program):
            step = layers.autoincreased_step_counter(begin=1)

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
            k_steps = layers.create_global_var(name="k_steps",
                                               shape=[1],
                                               value=int(init_k_steps),
                                               dtype='int64',
                                               persistable=True)

            begin_step = layers.create_global_var(name="begin_step",
                                                  shape=[1],
                                                  value=int(begin_step_value),
                                                  dtype='int64',
                                                  persistable=True)

            last_step = layers.create_global_var(name="last_step",
                                                 shape=[1],
                                                 value=int(0),
                                                 dtype='int64',
                                                 persistable=True)

            avg_loss = layers.create_global_var(name="avg_loss",
                                                shape=[1],
                                                value=float(0),
                                                dtype=loss.dtype,
                                                persistable=True)

            lr_0 = layers.create_global_var(name="lr_0",
                                            shape=[1],
                                            value=float(0),
                                            dtype='float32',
                                            persistable=True)

            loss_0 = layers.create_global_var(name="loss_0",
                                              shape=[1],
                                              value=float(0),
                                              dtype='float32',
                                              persistable=True)
341 342 343 344 345 346 347 348 349 350 351 352 353 354

            global_lr = self.inner_opt._global_learning_rate()

            def initialize():
                self._generate_avg_loss(main_block, loss, avg_loss)
                layers.assign(avg_loss, loss_0)
                layers.assign(global_lr, lr_0)

            layers.cond(step == 1, initialize)

            def communicate():
                sub_block = default_main_program().current_block()
                ring_id = -1
                for param, snapshot in p2s:
355 356 357 358 359 360 361 362 363 364 365
                    sub_block.append_op(type='elementwise_sub',
                                        inputs={
                                            'X': [snapshot],
                                            'Y': [param]
                                        },
                                        outputs={'Out': [param]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(type='c_sync_calc_stream',
                                        inputs={'X': param},
                                        outputs={'Out': param},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
366
                    ring_id = (ring_id + 1) % self.nrings
367 368 369 370 371 372 373
                    sub_block.append_op(type='c_allreduce_sum',
                                        inputs={'X': [param]},
                                        outputs={'Out': [param]},
                                        attrs={
                                            'ring_id': ring_id,
                                            OP_ROLE_KEY: OpRole.Optimize
                                        })
374 375

                for ring_id in range(self.nrings):
376 377 378 379 380 381 382
                    sub_block.append_op(type='c_sync_comm_stream',
                                        inputs={'X': param},
                                        outputs={'Out': param},
                                        attrs={
                                            'ring_id': ring_id,
                                            OP_ROLE_KEY: OpRole.Optimize
                                        })
383 384

                for param, snapshot in p2s:
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
                    sub_block.append_op(type='scale',
                                        inputs={'X': [param]},
                                        outputs={'Out': [param]},
                                        attrs={
                                            'scale':
                                            1.0 / self.role_maker._worker_num(),
                                            OP_ROLE_KEY:
                                            OpRole.Optimize
                                        })
                    sub_block.append_op(type='elementwise_sub',
                                        inputs={
                                            'X': [snapshot],
                                            'Y': [param]
                                        },
                                        outputs={'Out': [param]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
                    sub_block.append_op(type='assign',
                                        inputs={'X': [param]},
                                        outputs={'Out': [snapshot]},
                                        attrs={OP_ROLE_KEY: OpRole.Optimize})
405 406 407 408 409
                layers.assign(step, last_step)

            def communicate_avg_loss():
                communicate()
                self._generate_avg_loss(main_block, loss, avg_loss)
410 411 412 413 414 415 416 417 418 419 420 421 422 423
                next_local_steps = layers.cast(layers.ceil(
                    layers.sqrt(lr_0 * avg_loss / (global_lr * loss_0) *
                                float(init_k_steps))),
                                               dtype='int64')
                max_local_steps = layers.fill_constant(shape=[1],
                                                       dtype='int64',
                                                       value=16)
                min_local_steps = layers.fill_constant(shape=[1],
                                                       dtype='int64',
                                                       value=1)
                next_local_steps = layers.elementwise_min(
                    next_local_steps, max_local_steps)
                next_local_steps = layers.elementwise_max(
                    next_local_steps, min_local_steps)
424 425 426 427 428 429 430 431
                layers.assign(next_local_steps, k_steps)

            def begin_localsgd():
                layers.cond(step - last_step == k_steps, communicate_avg_loss)

            layers.cond(step > begin_step, begin_localsgd, communicate)

        return minimized