elementwise_op_function.h 46.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
20
#include <functional>  // for multiplies
D
dzhwinter 已提交
21
#include <iterator>
22
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
27
#include "paddle/fluid/memory/malloc.h"
28
#include "paddle/fluid/operators/elementwise/elementwise_functor.h"
29
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/transform.h"
31

32 33
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/kernels/cpu/elementwise.h"
34
#include "paddle/phi/kernels/cpu/elementwise_grad.h"
35

36
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduoZH 已提交
37
#ifdef __NVCC__
38
#include <cuda.h>
39 40 41
#elif defined(__HIPCC__)
#include <hip/hip_runtime.h>
#endif
C
chengduoZH 已提交
42
#include <thrust/iterator/iterator_adaptor.h>
43

44
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
45
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
46 47
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
48
#include "paddle/phi/kernels/gpu/elementwise_grad.h"
49

C
chengduoZH 已提交
50 51
#endif

Y
Yu Yang 已提交
52
#include "paddle/fluid/platform/for_range.h"
53
#include "paddle/phi/kernels/funcs/math_function.h"
54

55 56 57 58
#define DIVUP(x, y) (((x) + (y)-1) / (y))

#define ROUNDUP(x, y) (DIVUP((x), (y)) * (y))

59 60 61
namespace paddle {
namespace operators {

62
/*
63 64 65 66 67 68 69
*  Pack input and output tensors into respective vectors with
*  consideration of varible X`s class type.
*  Input variable X is supported to be whether LoDTensor or
*  SelectedRows class type in this package function, once X
*  was SelectedRows type, a valid pointer x_for_selectedrows
*  is excepted to be passed in from op kernel for acquisition
*  of the valid address of LoDTensor created ahead in the function.
70
*/
71 72 73
template <typename OutT>
int PackTensorsIntoVector(const framework::ExecutionContext &ctx,
                          std::vector<const framework::Tensor *> *ins,
74 75
                          std::vector<framework::Tensor *> *outs,
                          framework::Tensor *x_for_selectedrows = nullptr) {
76
  int axis = -1;
77 78 79 80 81
  auto x_var = ctx.InputVar("X");
  PADDLE_ENFORCE_NOT_NULL(
      x_var, platform::errors::InvalidArgument(
                 "Unable to get input Variable X, Variable name is %s.\n",
                 ctx.InputName("X")));
82
  auto *y = ctx.Input<framework::LoDTensor>("Y");
83 84 85 86 87 88
  framework::Tensor *z;

  if (x_var->IsType<framework::LoDTensor>()) {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    z = ctx.Output<framework::LoDTensor>("Out");
    ins->emplace_back(x);
89
  } else if (x_var->IsType<phi::SelectedRows>()) {
90 91 92 93 94 95 96 97 98 99 100
    PADDLE_ENFORCE_EQ(y->dims().size() == 1 && y->dims()[0] == 1, true,
                      platform::errors::InvalidArgument(
                          "For elementwise_op, if X is Sparse, Y must be "
                          "scalar. But reveived the size of Y = %d.",
                          y->dims().size()));
    PADDLE_ENFORCE_NOT_NULL(
        x_for_selectedrows,
        platform::errors::InvalidArgument(
            "The parameter x_for_selectedrows is excepted to "
            "be valid, once input varible X`s class type is "
            "SelectedRows.\n"));
101 102
    auto &x_sele = x_var->Get<phi::SelectedRows>();
    auto out_sele = ctx.Output<phi::SelectedRows>("Out");
103 104 105 106 107 108
    *x_for_selectedrows = x_sele.value();
    out_sele->set_rows(x_sele.rows());
    out_sele->set_height(x_sele.height());
    out_sele->mutable_value()->Resize(x_sele.value().dims());
    out_sele->mutable_value()->mutable_data(ctx.GetPlace(),
                                            x_for_selectedrows->type());
109
    z = ctx.Output<phi::SelectedRows>("Out")->mutable_value();
110 111 112 113 114 115 116
    ins->emplace_back(x_for_selectedrows);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "X's type[%s] is not supported by elementwise_op. X's type should be "
        "LoDTensor or SelectedRows.",
        framework::ToTypeName(x_var->Type())));
  }
117
  z->mutable_data<OutT>(ctx.GetPlace());
118 119 120 121
  outs->emplace_back(z);

  if (y != nullptr) {
    ins->emplace_back(y);
122
    axis = ctx.HasAttr("axis") ? ctx.Attr<int>("axis") : -1;
123
  }
124
  return axis;
125 126
}

127 128 129 130 131
inline void GetBroadcastDimsArrays(const framework::DDim &x_dims,
                                   const framework::DDim &y_dims,
                                   int *x_dims_array, int *y_dims_array,
                                   int *out_dims_array, const int max_dim,
                                   const int axis) {
132 133
  phi::funcs::GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array, y_dims_array,
                                     out_dims_array, max_dim, axis);
134
}
135

136
inline framework::DDim trim_trailing_singular_dims(
137
    const framework::DDim &dims) {
138
  return phi::funcs::TrimTrailingSingularDims(dims);
139 140
}

F
Feiyu Chan 已提交
141 142
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
          typename Tout = T>
143 144 145 146 147
void ElemwiseGradCompute(const framework::ExecutionContext &ctx,
                         const framework::Tensor &x, const framework::Tensor &y,
                         const framework::Tensor &out,
                         const framework::Tensor &dout, int axis,
                         framework::Tensor *dx, framework::Tensor *dy,
Y
Yu Yang 已提交
148
                         DX_OP dx_op, DY_OP dy_op) {
149
  const auto &dev_ctx = ctx.template device_context<DeviceContext>();
150 151
  phi::funcs::ElemwiseGradCompute<DeviceContext, T, DX_OP, DY_OP, Tout>(
      dev_ctx, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
152 153
}

154 155 156 157
// It is a common implementation to compute binary calculation with the support
// of broadcast, supporting both CPU and GPU.
// - CPU implementation cannot support the case when x needs broadcast, thus
//   this function need to be called with XxxFunctor and XxxInverseFunctor,
158
//   like AddFunctor and InverseAddFunctor.
159 160 161 162
// - GPU implementation supports all the broadcast cases, thus there is no need
//   to define and call with XxxInverseFunctor.
// TODO(liuyiqun): optimize the CPU implementation to support all broadcast
// cases and avoid the need of XxxInverseFunctor.
163 164
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
165 166 167 168
void ElementwiseComputeEx(const framework::ExecutionContext &ctx,
                          const framework::Tensor *x,
                          const framework::Tensor *y, int axis, Functor func,
                          framework::Tensor *z) {
169
  z->mutable_data<OutType>(ctx.GetPlace());
170 171 172
  const auto &dev_ctx = ctx.template device_context<DeviceContext>();
  phi::funcs::ElementwiseCompute<Functor, T, OutType>(dev_ctx, *x, *y, axis,
                                                      func, z);
F
fengjiayi 已提交
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
// FusedElemwiseAndAct
// --- forward
template <typename T, typename CompoundFunctor, bool KeepIntermediateOut>
struct FusedElemwiseAndActNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    T y_val = y_[i];
    T x_val = x_[i];
    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor_.GetIntermediateOut(x_val, y_val);
      intermediate_out_[i] = intermeidiate_out;
      out_[i] =
          compound_functor_.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out_[i] = compound_functor_.GetOut(x_val, y_val);
    }
  }

  const T *x_;
  const T *y_;
  CompoundFunctor compound_functor_;
  T *out_;
  T *intermediate_out_;
};

// FusedElemwiseAndActBroadcast1:
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) and axis = -1 or 2,
// X can be reshaped to (6, 20) and Y can be reshaped to (1, 20)
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CPU(const T *x, const T *y,
                                             CompoundFunctor compound_functor,
                                             int h, int w, T *out,
                                             T *intermediate_out) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      T y_val = BcastY ? y[j] : y[offset];
      T x_val = BcastY ? x[offset] : x[j];
      int64_t intermediate_out_offset;
      if (KeepIntermediateOut) {
        T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

        if (SameShapeOfIntermediateOutAndOut) {
          // for the case of f1(f2(x, y))
          intermediate_out_offset = offset;
        } else if (BcastY) {
          intermediate_out_offset = j;
        } else {
          intermediate_out_offset = offset;
        }

        intermediate_out[intermediate_out_offset] = intermeidiate_out;
        out[offset] =
            compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
      } else {
        out[offset] = compound_functor.GetOut(x_val, y_val);
      }
    }
  }
}

// FusedElemwiseAndActBroadcast2
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4) and axis = 1,
// X can be reshaped to (2, 12, 5) and Y can be reshaped to (1, 12, 1)
// pre = 2, n = 12, post = 5
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CPU(const T *x, const T *y, int pre,
                                             int n, int post,
                                             CompoundFunctor compound_functor,
                                             T *out, T *intermediate_out) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        T y_val = BcastY ? y[j] : y[offset];
        T x_val = BcastY ? x[offset] : x[j];
        int64_t intermediate_out_offset;

        if (KeepIntermediateOut) {
          T intermeidiate_out =
              compound_functor.GetIntermediateOut(x_val, y_val);

          if (SameShapeOfIntermediateOutAndOut) {
            // for the case of f1(f2(x, y))
            intermediate_out_offset = offset;
          } else if (BcastY) {
            intermediate_out_offset = j;
          } else {
            intermediate_out_offset = offset;
          }

          intermediate_out[intermediate_out_offset] = intermeidiate_out;
          out[offset] = compound_functor.GetOutUseIntermediateOut(
              x_val, intermeidiate_out);
        } else {
          out[offset] = compound_functor.GetOut(x_val, y_val);
        }
      }
    }
  }
}

282
#if defined(__NVCC__) || defined(__HIPCC__)
283 284 285 286 287
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast1CUDAKernel(
    const T *x, const T *y, int h, int w, CompoundFunctor compound_functor,
    T *out, T *intermediate_out) {
288 289
  int i = blockIdx.x;
  int j = threadIdx.x;
290

291
  while (j < w) {
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    int offset = i * w + j;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

317
    j += ELEMWISE_MAX_BLOCK_DIM;
318 319 320 321 322
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
323
static void FusedElemwiseAndActBroadcast1CUDA(gpuStream_t stream, const T *x,
324 325 326 327
                                              const T *y,
                                              CompoundFunctor compound_functor,
                                              int h, int w, T *out,
                                              T *intermediate_out) {
328 329
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, w);
  int gird_size = h;
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  FusedElemwiseAndActBroadcast1CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, h, w, compound_functor, out, intermediate_out);
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast2CUDAKernel(
    const T *x, const T *y, CompoundFunctor compound_functor, int pre, int n,
    int post, T *out, T *intermediate_out) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  while (true) {
    int i = tid / post;
    int k = tid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    tid += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
380
static void FusedElemwiseAndActBroadcast2CUDA(gpuStream_t stream, const T *x,
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
                                              const T *y, int pre, int n,
                                              int post,
                                              CompoundFunctor compound_functor,
                                              T *out, T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;

  FusedElemwiseAndActBroadcast2CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, compound_functor, pre, n, post, out, intermediate_out);
}

#endif

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut>
void FusedElemwiseAndActComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::Tensor &x, const framework::Tensor &y,
    CompoundFunctor compound_functor, framework::Tensor *out,
    framework::Tensor *intermediate_out) {
403
  size_t N = static_cast<size_t>(phi::product(x_dim));
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);

  for_range(
      FusedElemwiseAndActNoBroadcast<T, CompoundFunctor, KeepIntermediateOut>{
          x.data<T>(), y.data<T>(), compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool BcastY, bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
    const framework::Tensor &y, CompoundFunctor compound_functor, int axis,
    framework::Tensor *out, framework::Tensor *intermediate_out) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

429
  int pre, n, post, is_run_common_broadcast;
430 431
  phi::funcs::GetMidDims(x_dim, y_dim, axis, &pre, &n, &post,
                         &is_run_common_broadcast);
432 433 434 435
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
436
#if defined(__NVCC__) || defined(__HIPCC__)
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
      FusedElemwiseAndActBroadcast1CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast1CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
459
#if defined(__NVCC__) || defined(__HIPCC__)
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
      FusedElemwiseAndActBroadcast2CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast2CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

// --- backward
C
chengduo 已提交
484 485
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut>
486 487
struct FusedElemwiseAndActGradNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
488 489 490
    T zero = static_cast<T>(0);
    T x_val = (x_ == nullptr) ? zero : x_[i];
    T y_val = (y_ == nullptr) ? zero : y_[i];
491 492 493 494 495
    T out_val = out_[i];
    T dout_val = dout_[i];
    T intermediate_out_val = UseIntermediateOut
                                 ? intermediate_out_[i]
                                 : dx_op_.GetIntermediateOut(x_val, y_val);
496
    if (dx_ != nullptr) {
497 498
      dx_[i] = dx_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
499 500
    }
    if (dy_ != nullptr) {
501 502
      dy_[i] = dy_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
C
chengduo 已提交
503 504
    }
    if (dintermediate_ != nullptr) {
505 506
      dintermediate_[i] = dintermediate_op_.UseIntermediateOut(
          x_val, intermediate_out_val, out_val, dout_val);
507 508 509 510 511 512 513 514 515 516
    }
  }

  const T *x_;
  const T *y_;
  const T *intermediate_out_;
  const T *out_;
  const T *dout_;
  DX_OP dx_op_;
  DY_OP dy_op_;
C
chengduo 已提交
517
  DIntermediate_OP dintermediate_op_;
518 519
  T *dx_;
  T *dy_;
C
chengduo 已提交
520
  T *dintermediate_;
521 522 523
};

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
524
          typename DIntermediate_OP, bool UseIntermediateOut>
525 526 527 528 529
void FusedElemwiseAndActGradComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
530 531 532
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
533
  size_t N = static_cast<size_t>(phi::product(x_dim));
534 535
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
536 537 538 539 540 541 542 543 544 545 546 547 548
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  if (x->IsInitialized()) x_data = x->data<T>();
  if (y->IsInitialized()) y_data = y->data<T>();

  for_range(FusedElemwiseAndActGradNoBroadcast<
            T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>{
      x_data, y_data, intermediate_out ? intermediate_out->data<T>() : nullptr,
      out->data<T>(), dout->data<T>(), dx_op, dy_op, dintermediate_op,
      dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
      dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                               ctx.GetPlace())});
549 550
}

C
chengduo 已提交
551 552 553 554 555 556 557
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
558
  int64_t tmp_out_idx, x_idx, y_idx;
559
  T zero = static_cast<T>(0);
560 561 562 563 564 565 566
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      tmp_out_idx = BcastY ? j : offset;
      y_idx = BcastY ? j : offset;
      x_idx = BcastY ? offset : j;
567 568
      T x_val = (x == nullptr) ? zero : x[x_idx];
      T y_val = (y == nullptr) ? zero : y[y_idx];
569 570 571 572 573 574 575

      if (SameShapeOfIntermediateOutAndOut) {
        tmp_out_idx = offset;
      }

      if (dx != nullptr) {
        T tmp = UseIntermediateOut
576
                    ? dx_op.UseIntermediateOut(x_val, y_val,
C
chengduo 已提交
577 578
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
579
                    : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
580 581 582 583 584 585 586 587 588 589 590 591 592

        if (BcastY) {
          dx[x_idx] = tmp;
        } else {
          if (i == 0) {
            dx[x_idx] = tmp;
          } else {
            dx[x_idx] += tmp;
          }
        }
      }
      if (dy != nullptr) {
        T tmp = UseIntermediateOut
593
                    ? dy_op.UseIntermediateOut(x_val, y_val,
C
chengduo 已提交
594 595
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
596
                    : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
597 598 599 600 601 602 603 604 605 606
        if (BcastY) {
          if (i == 0) {
            dy[y_idx] = tmp;
          } else {
            dy[y_idx] += tmp;
          }
        } else {
          dy[y_idx] = tmp;
        }
      }
C
chengduo 已提交
607 608 609
      if (d_intermediate != nullptr) {
        T tmp = UseIntermediateOut
                    ? dintermediate_op.UseIntermediateOut(
610
                          x_val, intermediate_out[tmp_out_idx], out[offset],
C
chengduo 已提交
611
                          dout[offset])
612 613
                    : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                 dout[i]);
C
chengduo 已提交
614 615 616 617 618 619 620 621 622 623
        if (SameShapeOfIntermediateOutAndOut) {
          d_intermediate[tmp_out_idx] = tmp;
        } else {
          if (i == 0) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            d_intermediate[tmp_out_idx] += tmp;
          }
        }
      }
624 625 626 627
    }
  }
}

C
chengduo 已提交
628 629 630 631 632 633 634
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast2CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
635
  int64_t tmp_out_idx, x_idx, y_idx;
636
  T zero = static_cast<T>(0);
637 638 639 640 641 642 643 644 645
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        tmp_out_idx = BcastY ? j : offset;
        y_idx = BcastY ? j : offset;
        x_idx = BcastY ? offset : j;

646 647 648
        T x_val = (x == nullptr) ? zero : x[x_idx];
        T y_val = (y == nullptr) ? zero : y[y_idx];

649 650 651 652 653
        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }

        if (dx != nullptr) {
654 655 656 657 658 659
          T tmp =
              UseIntermediateOut
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
660 661 662 663 664 665 666 667 668 669 670 671

          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            if (i == 0 && k == 0) {
              dx[x_idx] = tmp;
            } else {
              dx[x_idx] += tmp;
            }
          }
        }
        if (dy != nullptr) {
672 673 674 675 676 677
          T tmp =
              UseIntermediateOut
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
678 679 680 681 682 683 684 685 686 687
          if (BcastY) {
            if (i == 0 && k == 0) {
              dy[y_idx] = tmp;
            } else {
              dy[y_idx] += tmp;
            }
          } else {
            dy[y_idx] = tmp;
          }
        }
C
chengduo 已提交
688 689 690
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
691 692 693 694
                            x_val, intermediate_out[tmp_out_idx], out[offset],
                            dout[offset])
                      : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                   dout[i]);
C
chengduo 已提交
695 696 697 698 699 700 701 702 703 704
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            if (i == 0) {
              d_intermediate[tmp_out_idx] = tmp;
            } else {
              d_intermediate[tmp_out_idx] += tmp;
            }
          }
        }
705 706 707 708 709
      }
    }
  }
}

710
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
711 712 713
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
714 715
static __global__ void FusedElemwiseAndActGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
716 717
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
718 719 720 721 722 723
  __shared__ T sdata[BLOCK_Y][BLOCK_X];
  size_t idx = threadIdx.x + BLOCK_X * blockIdx.x;
  size_t width_stride = gridDim.x * BLOCK_X;

  size_t full_w = ROUNDUP(w, BLOCK_X);

724
  T zero = static_cast<T>(0);
725

726 727 728 729 730
  for (size_t j = idx; j < full_w; j += width_stride) {
    T val(0), inter_val(0);
    if (j < w) {
      for (size_t i = threadIdx.y; i < h; i += BLOCK_Y) {
        size_t offset = i * w + j;
731

732 733 734 735 736
        size_t tmp_out_idx = BcastY ? j : offset;
        size_t y_idx = BcastY ? j : offset;
        size_t x_idx = BcastY ? offset : j;
        T x_val = (x == nullptr) ? zero : x[x_idx];
        T y_val = (y == nullptr) ? zero : y[y_idx];
737

738 739 740
        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }
741

742 743 744
        if (dx != nullptr) {
          T tmp =
              UseIntermediateOut
745 746 747 748
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
749

750 751 752 753 754 755 756 757 758
          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            val += tmp;
          }
        }
        if (dy != nullptr) {
          T tmp =
              UseIntermediateOut
759 760 761 762
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
          if (BcastY) {
            val += tmp;
          } else {
            dy[y_idx] = tmp;
          }
        }
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
                            y[y_idx], intermediate_out[tmp_out_idx],
                            out[offset], dout[offset])
                      : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                   dout[offset]);
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            inter_val += tmp;
          }
        }
C
chengduo 已提交
782 783
      }
    }
784

785 786 787 788 789 790 791 792 793
    // transpose, for ReduceSum with wrap
    sdata[threadIdx.y][threadIdx.x] = val;
    __syncthreads();
    val = sdata[threadIdx.x][threadIdx.y];
#pragma unroll
    for (int i = BLOCK_X >> 1; i > 0; i >>= 1) {
      // reduce sum with wrap
      val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);
    }
794

795 796 797 798
    size_t idx_j = j + threadIdx.y;
    if (BcastY) {
      if (dy) {
        if (threadIdx.x == 0 && (idx_j < w)) dy[idx_j] = val;
799
      }
800 801 802
    } else {
      if (dx) {
        if (threadIdx.x == 0 && (idx_j < w)) dx[idx_j] = val;
803 804
      }
    }
805 806 807 808 809 810 811 812 813 814 815 816

    if (!SameShapeOfIntermediateOutAndOut) {
      if (d_intermediate) {
        sdata[threadIdx.y][threadIdx.x] = inter_val;
        __syncthreads();
        inter_val = sdata[threadIdx.x][threadIdx.y];
#pragma unroll
        for (int i = BLOCK_X >> 1; i > 0; i >>= 1) {
          // reduce sum with wrap
          inter_val += platform::CudaShuffleXorSync(0xFFFFFFFF, inter_val, i);
        }
        if (threadIdx.x == 0 && (idx_j < w)) d_intermediate[idx_j] = inter_val;
C
chengduo 已提交
817 818
      }
    }
819
  }  // end for
820 821
}

C
chengduo 已提交
822 823 824 825
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CUDA(
826 827 828 829 830 831 832 833 834 835 836 837
    const framework::ExecutionContext &ctx, const T *x, const T *y,
    const T *intermediate_out, const T *out, const T *dout, int h, int w,
    DX_OP dx_op, DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *d_intermediate) {
  gpuStream_t stream = ctx.cuda_device_context().stream();

  dim3 blocks(BLOCK_X, BLOCK_Y);
  int max_gpu_threads = ctx.cuda_device_context().GetMaxPhysicalThreadCount();
  int max_blocks = std::max(max_gpu_threads / (BLOCK_X * BLOCK_Y), 1);
  int theory_block = (w + BLOCK_X - 1) / BLOCK_X;
  dim3 grids(std::min(theory_block, max_blocks));

838
  FusedElemwiseAndActGradBroadcast1CUDAKernel<
C
chengduo 已提交
839
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
840
      SameShapeOfIntermediateOutAndOut><<<grids, blocks, 0, stream>>>(
C
chengduo 已提交
841 842
      x, y, intermediate_out, out, dout, h, w, dx_op, dy_op, dintermediate_op,
      dx, dy, d_intermediate);
843 844
}

C
chengduo 已提交
845 846 847
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
848 849
static __global__ void FusedElemwiseAndActGradBroadcast2CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
850 851
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
852 853 854
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
855
  T val(0), inter_val(0);
856 857
  int ttid = tid;
  int64_t tmp_out_idx, x_idx, y_idx;
858
  T zero = static_cast<T>(0);
859 860 861 862 863 864 865 866 867 868
  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;
869 870
    T x_val = (x == nullptr) ? zero : x[x_idx];
    T y_val = (y == nullptr) ? zero : y[y_idx];
871 872 873 874 875 876

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
877 878 879 880 881
      T tmp = UseIntermediateOut
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
882 883 884 885 886 887 888 889

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
890 891 892 893 894
      T tmp = UseIntermediateOut
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
895 896 897 898 899 900
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
901 902 903
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
904
                        y_val, intermediate_out[tmp_out_idx], out[offset],
C
chengduo 已提交
905
                        dout[offset])
906
                  : dintermediate_op.Recompute(x_val, y_val, out[offset],
C
chengduo 已提交
907 908 909 910 911 912 913
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
914 915 916
    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

C
chengduo 已提交
917 918
  int h = pre * post;
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
934 935 936 937 938 939 940 941
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
942 943
}

C
chengduo 已提交
944 945 946
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
947
static void FusedElemwiseAndActGradBroadcast2CUDA(
948
    gpuStream_t stream, const T *x, const T *y, const T *intermediate_out,
949
    const T *out, const T *dout, int pre, int n, int post, DX_OP dx_op,
C
chengduo 已提交
950 951
    DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *dintermediate) {
952 953 954
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
  FusedElemwiseAndActGradBroadcast2CUDAKernel<
C
chengduo 已提交
955
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
956
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
957 958
      x, y, intermediate_out, out, dout, pre, n, post, dx_op, dy_op,
      dintermediate_op, dx, dy, dintermediate);
959 960 961 962
}
#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
963
          typename DIntermediate_OP, bool UseIntermediateOut, bool BcastY,
964 965 966 967 968 969
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActGradComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
970 971 972
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
973 974 975 976
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

977
  int pre, n, post, is_run_common_broadcast;
978 979
  phi::funcs::GetMidDims(x_dim, y_dim, axis, &pre, &n, &post,
                         &is_run_common_broadcast);
980 981 982 983
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  if (x->IsInitialized()) x_data = x->data<T>();
  if (y->IsInitialized()) y_data = y->data<T>();
984 985 986
  if (post == 1) {
    int h = pre;
    int w = n;
987

988
    if (platform::is_gpu_place(ctx.GetPlace())) {
989
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
990 991
      FusedElemwiseAndActGradBroadcast1CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
992
                                            SameShapeOfIntermediateOutAndOut>(
993
          ctx, x_data, y_data,
994
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
995
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
996
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
997 998 999
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1000 1001
#endif
    } else {
C
chengduo 已提交
1002 1003
      FusedElemwiseAndActGradBroadcast1CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
1004
                                           SameShapeOfIntermediateOutAndOut>(
1005
          x_data, y_data,
1006
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
1007
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
1008
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1009 1010 1011
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1012 1013 1014
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
1015
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
1016 1017
      FusedElemwiseAndActGradBroadcast2CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
1018
                                            SameShapeOfIntermediateOutAndOut>(
1019
          ctx.template device_context<DeviceContext>().stream(), x_data, y_data,
1020 1021
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
1022
          dintermediate_op,
1023
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1024 1025 1026
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1027 1028
#endif
    } else {
C
chengduo 已提交
1029 1030
      FusedElemwiseAndActGradBroadcast2CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
1031
                                           SameShapeOfIntermediateOutAndOut>(
1032
          x_data, y_data,
1033 1034
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
1035
          dintermediate_op,
1036
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1037 1038 1039
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1040 1041 1042 1043 1044
    }
  }
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
1045 1046
          typename DIntermediate_OP, bool UseIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
1047 1048 1049 1050
void FusedElemwiseAndActGradComputeEx(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *out,
    const framework::Tensor *intermediate_out, const framework::Tensor *dout,
C
chengduo 已提交
1051 1052 1053
    int axis, framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
1054 1055 1056
  const framework::DDim &x_dim = x->dims();
  const framework::DDim &y_dim = y->dims();
  if (UseIntermediateOut) {
1057 1058 1059
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument("Intermediate out is null pointer."));
1060 1061
  }
  if (x_dim == y_dim) {
C
chengduo 已提交
1062 1063
    FusedElemwiseAndActGradComputeNoBroadcast<
        DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>(
1064
        ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
C
chengduo 已提交
1065
        dintermediate, dx_op, dy_op, dintermediate_op);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
  } else {  // Y is a scalar
    bool bcast_y = x_dim.size() >= y_dim.size();
    if (x_dim.size() == y_dim.size()) {
      for (int i = 0; i < x_dim.size(); ++i) {
        if (x_dim[i] < y_dim[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
1081 1082 1083 1084
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          true /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
1085 1086
    } else {
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
1087 1088 1089 1090
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          false /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim, x_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    }
  }
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeEx(const framework::ExecutionContext &ctx,
                                  const framework::Tensor &x,
                                  const framework::Tensor &y, int axis,
                                  CompoundFunctor compound_functor,
                                  framework::Tensor *out,
                                  framework::Tensor *intermediate_out) {
  if (KeepIntermediateOut) {
1104 1105 1106 1107 1108
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument(
            "The save_intermediate_out is opened, intermediate "
            "out is null pointer."));
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
  }

  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
    FusedElemwiseAndActComputeNoBroadcast<DeviceContext, T, CompoundFunctor,
                                          KeepIntermediateOut>(
        ctx, x_dim, x, y, compound_functor, out, intermediate_out);
  } else {
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
1120
    bool bcast_y = x.numel() >= y.numel();
1121 1122 1123 1124
    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      // In this case,
1125 1126
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
      // of Y.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of X.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, true /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim /*OutShape*/, y_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    } else {
      // In this case,
1138 1139
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
      // of Out.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of Y.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, false /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim /*OutShape*/, x_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    }
  }
}
1152 1153 1154 1155 1156

template <typename DeviceContext, typename T>
static inline void GetDoubleGradSafeTensor(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *ddx, framework::Tensor *ddx_safe) {
1157
  const auto &dev_ctx = ctx.template device_context<DeviceContext>();
1158 1159
  phi::funcs::GetDoubleGradSafeTensor<DeviceContext, T>(dev_ctx, *x, ddx,
                                                        ddx_safe);
1160 1161
}

1162 1163 1164 1165
// for broadcast backwards
static inline std::vector<int> GetReduceDim(const framework::DDim &in,
                                            const framework::DDim &out,
                                            int axis) {
1166
  return phi::funcs::GetReduceDim(in, out, axis);
1167
}
1168 1169 1170 1171 1172 1173 1174 1175 1176

#if defined(__NVCC__) || defined(__HIPCC__)

template <ElementwiseType ET, typename T, typename Functor>
void GetGradXAndYOut(const platform::CUDADeviceContext &dev_ctx,
                     const platform::Place &place, int axis,
                     std::vector<const framework::Tensor *> ins,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy, Functor func) {
1177 1178
  phi::GetGradXAndYOut<ET, T, Functor>(dev_ctx, place, axis, ins, *dout, dx, dy,
                                       func);
1179 1180 1181 1182 1183 1184 1185 1186
}

template <ElementwiseType ET, typename T, typename Functor>
void GetGradXOrYOut(const platform::CUDADeviceContext &dev_ctx,
                    const platform::Place &place, int axis,
                    std::vector<const framework::Tensor *> ins,
                    const framework::Tensor *dout, framework::Tensor *dxy,
                    Functor func) {
1187 1188
  phi::GetGradXOrYOut<ET, T, Functor>(dev_ctx, place, axis, ins, *dout, dxy,
                                      func);
1189 1190 1191 1192
}

#endif

1193 1194
}  // namespace operators
}  // namespace paddle